Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A blueprint for clearing the skies of space debris

17.04.2015

An international team of scientists have put forward a blueprint for a purely space-based system to solve the growing problem of space debris. The proposal, published in Acta Astronautica, combines a super-wide field-of-view telescope, developed by RIKEN’s EUSO team, which will be used to detect objects, and a recently developed high-efficiency laser system, the CAN laser that was presented in Nature Photonics in 2013, that will be used to track space debris and remove it from orbit.

Space debris, which is continuously accumulating as a result of human space activities, consists of artificial objects orbiting the earth. The number of objects nearly doubled from 2000 to 2014 and they have become a major obstacle to space development. The total mass of space debris is calculated to be about 3,000 tons. It consists of derelict satellites, rocket bodies and parts, and small fragments produced by collisions between debris.


The EUSO telescope

Because the debris exists in different orbits, it is difficult to capture. The objects can collide with space infrastructure such as the International Space Station (ISS) and active satellites. As a result, developing remediation technology has become a major challenge.

The EUSO telescope, which will be used to find debris, was originally planned to detect ultraviolet light emitted from air showers produced by ultra-high energy cosmic rays entering the atmosphere at night. “We realized,” says Toshikazu Ebisuzaki, who led the effort, “that we could put it to another use. During twilight, thanks to EUSO’s wide field of view and powerful optics, we could adapt it to the new mission of detecting high-velocity debris in orbit near the ISS.”

The second part of the experiment, the CAN laser, was originally developed to power particle accelerators. It consists of bundles of optical fibers that act in concert to efficiently produce powerful laser pulses. It achieves both high power and a high repetition rate.

The new method combining these two instruments will be capable of tracking down and deorbiting the most dangerous space debris, around the size of one centimeter. The intense laser beam focused on the debris will produce high-velocity plasma ablation, and the reaction force will reduce its orbital velocity, leading to its reentry into the earth's atmosphere.

The group plans to deploy a small proof-of-concept experiment on the ISS, with a small, 20-centimeter version of the EUSO telescope and a laser with 100 fibers. “If that goes well,” says Ebisuzaki, “we plan to install a full-scale version on the ISS, incorporating a three-meter telescope and a laser with 10,000 fibers, giving it the ability to deorbit debris with a range of approximately 100 kilometers. Looking further to the future, we could create a free-flyer mission and put it into a polar orbit at an altitude near 800 kilometers, where the greatest concentration of debris is found.”

According to Ebisuzaki, “Our proposal is radically different from the more conventional approach that is ground based, and we believe it is a more manageable approach that will be accurate, fast, and cheap. We may finally have a way to stop the headache of rapidly growing space debris that endangers space activities. We believe that this dedicated system could remove most of the centimeter-sized debris within five years of operation.”

The research was done by Toshikazu Ebisuzaki, Satoshi Wada, Lech Wiktor Piotrowski, Yoshiyuki Takizawa, and Marco Casolino of RIKEN, Toshiki Tajima of the University of California at Irvine, Mark N. Quinn, Remi Soulard and Gerard Mourou of IZEST EcolePolytechnique, Philippe Gorodetzky and Etienne Parizot of The AstroParticle and Cosmology laboratory/University of Paris 7, and Mario Bertaina of the University of Torino.

http://www.sciencedirect.com/science/article/pii/S0094576515000867

Full bibliographic information

Toshikazu Ebisuzaki, Mark N. Quinn, Satoshi Wada, Lech Wiktor Piotrowski, Yoshiyuki Takizawa, Marco Casolino, Mario E. Bertaina, Philippe Gorodetzky, Etienne Parizot, Toshiki Tajima, Rémi Soulard, and Gérard Mourou, "Demonstration designs for the remediation of space debris from the International Space Station", Acta Astronautica, doi:10.1016/j.actaastro.2015.03.004

Contact:

Dr. Toshikazu Ebisuzaki

RIKEN Computational Astrophysics Laboratory, Japan

Email: ebisu@postman.riken.jp

Jens Wilkinson | AlphaGalileo

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>