Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A baby crystal is born

18.01.2012
Lead sulfide (PbS) forms when an equal number of lead and sulfur atoms exchange electrons and bond together in cubic crystals.

Now scientists have determined that a structure comprising 32 lead-sulfur pairs is the smallest possible cubic arrangement that exhibits the same coordination as bulk lead sulfide. (The coordination number is the number of nearest neighbors each atom in the crystal has.)

Researchers from McNeese State University in Louisiana, John Hopkins University in Maryland, and the University of Konstanz in Germany identified the "baby crystal" by running computer simulations that calculated the energy and geometry of different structures containing different numbers of atoms. They found that (PbS)32 is the smallest stable unit that possesses both the same cubic structure and coordination number as the bulk crystal. The researchers also experimentally tested their theoretical findings by gently depositing (PbS)32 clusters on a graphite surface where they could easily migrate and merge together to form larger nanoscale structures.

By using scanning tunneling microscope images to measure the dimensions of the resultant lead sulfide nano-blocks, the researchers confirmed that the (PbS)32 "baby crystals" had indeed stacked together as theoretically predicted.

The results, published in the AIP's Journal of Chemical Physics, show how small lead sulfide crystals come together to form larger units and could help provide a better understanding of the mechanisms involved in the formation of solids.

Article: "(PbS)32: A Baby Crystal" is published in the Journal of Chemical Physics.

Authors: B. Kiran (1), Anil K. Kandalam (2), Rameshu Rallabandi, (1) Pratik Koirala (2), Xiang Li (4), Xin Tang (4), Yi Wang (4), Howard Fairbrother (4), Gerd Gantefoer (3), and Kit Bowen (4).

(1) Department of Chemistry, McNeese State University, La.
(2) Department of Physics, McNeese State University, La.
(3) Department of Physics, University of Konstanz, Germany
(4) Depts. Of Chemistry and Material Sciences, John Hopkins University, Md.

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>