Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A baby crystal is born

18.01.2012
Lead sulfide (PbS) forms when an equal number of lead and sulfur atoms exchange electrons and bond together in cubic crystals.

Now scientists have determined that a structure comprising 32 lead-sulfur pairs is the smallest possible cubic arrangement that exhibits the same coordination as bulk lead sulfide. (The coordination number is the number of nearest neighbors each atom in the crystal has.)

Researchers from McNeese State University in Louisiana, John Hopkins University in Maryland, and the University of Konstanz in Germany identified the "baby crystal" by running computer simulations that calculated the energy and geometry of different structures containing different numbers of atoms. They found that (PbS)32 is the smallest stable unit that possesses both the same cubic structure and coordination number as the bulk crystal. The researchers also experimentally tested their theoretical findings by gently depositing (PbS)32 clusters on a graphite surface where they could easily migrate and merge together to form larger nanoscale structures.

By using scanning tunneling microscope images to measure the dimensions of the resultant lead sulfide nano-blocks, the researchers confirmed that the (PbS)32 "baby crystals" had indeed stacked together as theoretically predicted.

The results, published in the AIP's Journal of Chemical Physics, show how small lead sulfide crystals come together to form larger units and could help provide a better understanding of the mechanisms involved in the formation of solids.

Article: "(PbS)32: A Baby Crystal" is published in the Journal of Chemical Physics.

Authors: B. Kiran (1), Anil K. Kandalam (2), Rameshu Rallabandi, (1) Pratik Koirala (2), Xiang Li (4), Xin Tang (4), Yi Wang (4), Howard Fairbrother (4), Gerd Gantefoer (3), and Kit Bowen (4).

(1) Department of Chemistry, McNeese State University, La.
(2) Department of Physics, McNeese State University, La.
(3) Department of Physics, University of Konstanz, Germany
(4) Depts. Of Chemistry and Material Sciences, John Hopkins University, Md.

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>