Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel approach to create high-density magnetic data storage

29.01.2009
In order to achieve higher storage densities on computer disks, the last decades were dominated by optimization of magnetic materials, i.e. the magnetic particles (grains) were gradually shrunk while, at the same time, the magnetic stability (magnetic anisotropy) was increased.

Usually, about 100 to 600 grains form one bit, i.e. the nowadays smallest storage unit. Each grain is about 10 nanometers in size. These grains are arranged next to each other on glass substrates that are plated with cobalt, chrome, and platinum.

Both the size and amount of the grains necessary for one bit could not be decreased further without decreasing the signal/noise ratio. Weaker signals could even be accompanied by loss of information. Therefore, new concepts of magnetic storage have to be found.

Physicists from the research centre Forschungszentrum Dresden-Rossendorf / FZD (Germany), the Universidad Autonoma de Barcelona (Spain) and further research institutions were able to generate magnetic areas which promise to overcome the obstacles of today’s data storage technology. Using a highly focused ion beam, i.e. fast charged atoms, they irradiated an iron-aluminum alloy in such a way that only the treated zones became ferromagnetic. As the ion beam is focused to a size of only a few nanometers and the ion dose is rather low, the created nanozones are extremely flat and significantly less than 100 nanometers in diameter.

The read/write heads of personal computer disks fly above the hard disks at a distance of 20 nanometers. Conventional technologies for structuring material surfaces on the nanoscale result in corrugated surfaces. These technologies are not suitable for hard disks because the generated bumpy nanostructures would interfere with the read/write heads and might finally destroy the disk.

The new superflat nanomagnets, however, fulfill all requirements concerning a new concept for magnetic data storage. In the future, each of these nanomagnets could serve as one bit, provided that they could be produced in parallel on large areas via lithographic techniques, and shrunk in size down to about 30 nanometers. “We are now working on the magnetic stability of our nanomagnets. Its increase would be a further step with respect to future industrial exploitation”, says Dr. Jürgen Fassbender, scientist at FZD.

Further information:
Dr. Jürgen Fassbender
Institute of Ion-Beam Physics and Materials Research
Forschungszentrum Dresden-Rossendorf (FZD)
Phone: ++49 351 260 - 3096
Email: j.fassbender@fzd.de
Contact to the media:
Dr. Christine Bohnet
Public Relations
Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 400, 01328 Dresden, Germany
Tel.: ++49 351 260 - 2450 or ++49 160 969 288 56
Fax: ++49 351 260 - 2700
Email : presse@fzd.de

Christine Bohnet | alfa
Further information:
http://www.fzd.de
http://www3.interscience.wiley.com/journal/121571544/abstract

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>