Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A novel approach to create high-density magnetic data storage

In order to achieve higher storage densities on computer disks, the last decades were dominated by optimization of magnetic materials, i.e. the magnetic particles (grains) were gradually shrunk while, at the same time, the magnetic stability (magnetic anisotropy) was increased.

Usually, about 100 to 600 grains form one bit, i.e. the nowadays smallest storage unit. Each grain is about 10 nanometers in size. These grains are arranged next to each other on glass substrates that are plated with cobalt, chrome, and platinum.

Both the size and amount of the grains necessary for one bit could not be decreased further without decreasing the signal/noise ratio. Weaker signals could even be accompanied by loss of information. Therefore, new concepts of magnetic storage have to be found.

Physicists from the research centre Forschungszentrum Dresden-Rossendorf / FZD (Germany), the Universidad Autonoma de Barcelona (Spain) and further research institutions were able to generate magnetic areas which promise to overcome the obstacles of today’s data storage technology. Using a highly focused ion beam, i.e. fast charged atoms, they irradiated an iron-aluminum alloy in such a way that only the treated zones became ferromagnetic. As the ion beam is focused to a size of only a few nanometers and the ion dose is rather low, the created nanozones are extremely flat and significantly less than 100 nanometers in diameter.

The read/write heads of personal computer disks fly above the hard disks at a distance of 20 nanometers. Conventional technologies for structuring material surfaces on the nanoscale result in corrugated surfaces. These technologies are not suitable for hard disks because the generated bumpy nanostructures would interfere with the read/write heads and might finally destroy the disk.

The new superflat nanomagnets, however, fulfill all requirements concerning a new concept for magnetic data storage. In the future, each of these nanomagnets could serve as one bit, provided that they could be produced in parallel on large areas via lithographic techniques, and shrunk in size down to about 30 nanometers. “We are now working on the magnetic stability of our nanomagnets. Its increase would be a further step with respect to future industrial exploitation”, says Dr. Jürgen Fassbender, scientist at FZD.

Further information:
Dr. Jürgen Fassbender
Institute of Ion-Beam Physics and Materials Research
Forschungszentrum Dresden-Rossendorf (FZD)
Phone: ++49 351 260 - 3096
Contact to the media:
Dr. Christine Bohnet
Public Relations
Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 400, 01328 Dresden, Germany
Tel.: ++49 351 260 - 2450 or ++49 160 969 288 56
Fax: ++49 351 260 - 2700
Email :

Christine Bohnet | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>