Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 50-year quest to isolate the thermoelectric effect is now over: Magnon drag unveiled

19.12.2011
As electrons move past atoms in a solid, their charge distorts the nearby lattice and can create a wave.

Reciprocally, a wave in the lattice affects the electrons motion, in analogy to a wave in the sea that pushes a surfer riding it. This interaction results in a thermoelectric effect that was first observed during the 1950´s and has come to be known as phonon-drag, because it can be quantified from the flow of lattice-wave quanta (phonons) that occurs over the temperature gradient.

Soon after the discovery of the phonon drag, an analogous phenomenon was predicted to appear in magnetic materials: the so called magnon drag. In a magnetic material the intrinsic magnetic moment or spin of the electrons arrange in an organized fashion. In ferromagnets, the spins maintain a parallel orientation. If a distortion in the preferred spin orientation occurs, a spin wave is created that could affect electron motion. It is therefore reasonable to expect that the flow of magnons (spin-wave quanta) could also drag the electrons.

Despite the similarities with phonon drag, the observation of the magnon drag has been elusive, and only a few indirect indications of its existence have been reported over the years. The main reason being the presence of other thermoelectric effects, most notably the phonon drag, that make it difficult to discriminate its contribution to the thermopower.

Researchers of ICN´s Physics and Engineering of Nanodevices Group, Marius V. Costache, Germán Bridoux, Ingmar Neumann and group leader ICREA Prof. Sergio O. Valenzuela used a unique device geometry to discriminate the magnon drag from other thermoelectric effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon drag thermoelectric effects.

The work is very timely as thermoelectric effects in spin-electronics (spintronics) are gathering increasing attention as a means of managing heat in nanoscale structures and of controlling spin information by using heat flow. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations.

This information is crucial to understand the physics of thermal spin transport. It both provides invaluable opportunities to gather knowledge about electron-magnon interactions and may be beneficial for energy conversion applications and for the search of novel pathways towards transporting spin information.

Prof. Dr. Sergio O. Valenzuela | EurekAlert!
Further information:
http://www.icn.cat

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>