Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 'nanoscale landscape' controls flow of surface electrons on a topological insulator

26.10.2012
Stripe-like contours on a surface modulate electrons that behave like light

In the relatively new scientific frontier of topological insulators, theoretical and experimental physicists have been studying the surfaces of these unique materials for insights into the behavior of electrons that display some very un-electron-like properties.

In topological insulators, electrons can behave more like photons, or particles of light. The hitch is that unlike photons, electrons have a mass that normally plays a defining role in their behavior. In the world of quantum physics, where everyday materials take on surprising and sometimes astonishing properties, electrons on the outer surface of these insulators behave and look uncharacteristically like light.

These unique properties have piqued the interests of scientists who see future applications in areas such as quantum computing and spintronics, or other realms rooted in the manipulation of electronic properties. The early challenge to those researchers is to begin to understand some simple ground rules for controlling these materials.

Boston College researchers report that the placement of tiny ripples on the surface of a topological insulator engineered from bismuth telluride effectively modulates so-called Dirac electrons so they flow in a pathway that perfectly mirrors the topography of the crystal's surface.

Associate Professor of Physics Vidya Madhavan and Assistant Professor of Physics Stephen Wilson report in the current online edition of Nature Communications that scanning tunneling microscopy is capable of revealing the characteristics of these tiny waves as they rise and fall, enabling the researchers to draw a direct connection between the features of the ripples and modulation of the waves across the material's surface.

Instead of chaotic behavior, the electrons flow in a path that mirrors the metal composite's surface, the team reports in an articled titled "Ripple-modulated electronic structure of a 3D topological insulator."

"What we've discovered is that electrons respond beautifully to this buckling of the material's surface," said Madhavan, the project director.

So harmoniously do the waves flow across the ripples – placed approximately 100 nanometers apart – that the researchers say further modifications of the crystal's "nanoscale landscape" could produce enough control to produce a one-dimensional quantum wire capable of carrying current with no dissipation.

The rippled surface appears to exert greater control and run less risk of creating imperfections than other methods, such as introducing chemical dopants, used in attempts to modulate the flow of electrons on the surface of other topological insulators, the researchers found.

Madhavan said the team had to provoke the electrons, which lay placidly atop the surface-state of the insulator, much like the glassy surface of an undisturbed lake. The team disrupted the electrons by introducing impurities, which had an effect similar to that of dropping a stone in a calm lake. This provocation produced waves of electrons that behave like waves of light as they travel pathways that mirror the contours created in the crystal.

"We did not expect the electrons to follow the topography," said Madhavan. "The topography imposes a sinusoidal potential upon the waves. The ripples create that potential by giving the electrons a landscape to follow. This is a way of possibly manipulating these electrons in topological insulators."

In addition to Madhavan and Wilson, the project team included post-doctoral researcher Yoshinori Okada and graduate students Wenwen Zhou, Daniel Walkup and Chetan Dhital.

NOTE: The report "Ripple-modulated electronic structure of a 3D topological insulator" can be cited via a digital object identifier (DOI) number. The DOI for this article is 10.1038/ncomms2150

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>