Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 'nanoscale landscape' controls flow of surface electrons on a topological insulator

26.10.2012
Stripe-like contours on a surface modulate electrons that behave like light

In the relatively new scientific frontier of topological insulators, theoretical and experimental physicists have been studying the surfaces of these unique materials for insights into the behavior of electrons that display some very un-electron-like properties.

In topological insulators, electrons can behave more like photons, or particles of light. The hitch is that unlike photons, electrons have a mass that normally plays a defining role in their behavior. In the world of quantum physics, where everyday materials take on surprising and sometimes astonishing properties, electrons on the outer surface of these insulators behave and look uncharacteristically like light.

These unique properties have piqued the interests of scientists who see future applications in areas such as quantum computing and spintronics, or other realms rooted in the manipulation of electronic properties. The early challenge to those researchers is to begin to understand some simple ground rules for controlling these materials.

Boston College researchers report that the placement of tiny ripples on the surface of a topological insulator engineered from bismuth telluride effectively modulates so-called Dirac electrons so they flow in a pathway that perfectly mirrors the topography of the crystal's surface.

Associate Professor of Physics Vidya Madhavan and Assistant Professor of Physics Stephen Wilson report in the current online edition of Nature Communications that scanning tunneling microscopy is capable of revealing the characteristics of these tiny waves as they rise and fall, enabling the researchers to draw a direct connection between the features of the ripples and modulation of the waves across the material's surface.

Instead of chaotic behavior, the electrons flow in a path that mirrors the metal composite's surface, the team reports in an articled titled "Ripple-modulated electronic structure of a 3D topological insulator."

"What we've discovered is that electrons respond beautifully to this buckling of the material's surface," said Madhavan, the project director.

So harmoniously do the waves flow across the ripples – placed approximately 100 nanometers apart – that the researchers say further modifications of the crystal's "nanoscale landscape" could produce enough control to produce a one-dimensional quantum wire capable of carrying current with no dissipation.

The rippled surface appears to exert greater control and run less risk of creating imperfections than other methods, such as introducing chemical dopants, used in attempts to modulate the flow of electrons on the surface of other topological insulators, the researchers found.

Madhavan said the team had to provoke the electrons, which lay placidly atop the surface-state of the insulator, much like the glassy surface of an undisturbed lake. The team disrupted the electrons by introducing impurities, which had an effect similar to that of dropping a stone in a calm lake. This provocation produced waves of electrons that behave like waves of light as they travel pathways that mirror the contours created in the crystal.

"We did not expect the electrons to follow the topography," said Madhavan. "The topography imposes a sinusoidal potential upon the waves. The ripples create that potential by giving the electrons a landscape to follow. This is a way of possibly manipulating these electrons in topological insulators."

In addition to Madhavan and Wilson, the project team included post-doctoral researcher Yoshinori Okada and graduate students Wenwen Zhou, Daniel Walkup and Chetan Dhital.

NOTE: The report "Ripple-modulated electronic structure of a 3D topological insulator" can be cited via a digital object identifier (DOI) number. The DOI for this article is 10.1038/ncomms2150

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>