Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3D Map of Massive Galaxies and Black Holes Offers Clues to Dark Matter, Dark Energy

09.08.2012
Astronomers have constructed the largest-ever three-dimensional map of massive galaxies and distant black holes, which will help the investigation of the mysterious “dark matter” and “dark energy” that make up 96 percent of the universe.

The map was produced by the Sloan Digital Sky Survey III (SDSS-III).

Early last year, the SDSS-III released the largest-ever image of the sky, which covered one-third of the night sky. The new data, “Data Release 9” (DR9), which publically releases the data from the first two years of this six-year project, begins expansion of this earlier image into a full three-dimensional map.

“What really makes me proud of this survey is our commitment to creating a legacy for the future,” said Michael Blanton, a New York University physics professor who led the team that prepared DR9. “Our goal is to create a map of the universe that will be used long after we are done, by future generations of astronomers, physicists, and the general public.”

DR9 is the latest in a series of data releases stretching back to 2001. This release includes new data from the ongoing SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), which will eventually measure the positions of 1.5 million massive galaxies over the past seven billion years of cosmic time, as well as 160,000 quasars—giant black holes actively feeding on stars and gas—from as long ago as 12 billion years in the past.

BOSS is targeting these big, bright galaxies because they live in the same places as other galaxies and they’re easy to spot, even far away in the universe. Mapping these big galaxies thus provides an effective way to make a map of the rest of the galaxies in the universe.

With such a map, scientists can retrace the history of the universe over the last seven billion years. With that history, they can get better estimates for how much of the universe is made up of “dark matter”—matter that we can’t directly see because it doesn’t emit or absorb light—and “dark energy,” the even more mysterious force that drives the accelerating expansion of the universe.

“Dark matter and dark energy are two of the greatest mysteries of our time,” said David Schlegel of Lawrence Berkeley National Laboratory, who led the SDSS-III effort to map these galaxies and quasars. “We hope that our new map of the universe can help someone solve the mystery.”

That map of the universe is the centerpiece of DR9. The release includes images of 200 million galaxies and spectra of 1.35 million galaxies, including new spectra of 540,000 galaxies from when the universe was half its present age. Spectra show how much light a galaxy gives off at different wavelengths. Because this light is shifted to longer redder wavelengths as the universe expands, spectra allow scientists to figure out how much the universe has expanded since the light left each galaxy. The galaxy images, plus these measurements of expansion, are combined by SDSS-III scientists to create the three-dimensional map released with DR9.

Distant “quasars” provide another way to measure the distribution of matter in the universe. Quasars are the brightest objects in the distant universe and their spectra show intricate patterns imprinted by the large-scale clumping of intergalactic gas and underlying dark matter that lies between each quasar and the Earth.

These new data are not only helping us understand the distant universe, but also our own cosmic backyard, the Milky Way galaxy. DR9 includes better estimates for the temperatures and chemical compositions of more than half a million stars in our own galaxy.

“With these better estimates, we can look back at the history of our galaxy,” said Connie Rockosi of the University of California, Santa Cruz, who leads the SDSS-III’s Milky Way study. “We can tell the story of how smaller galaxies came together to build up the Milky Way we see today.”

All these new images and spectra contain the promise of new discoveries about our universe—but the SDSS-III is only in the middle of its six-year survey.

“The most fun part of making this data available online is knowing that anyone on the Internet can now access the very same data and search tools that professional astronomers use to make exciting discoveries about our universe,” said Ani Thakar of Johns Hopkins University.

And DR9 doubtless contains many surprises.

“This is science at its collaborative best,” said Michael Wood-Vasey, a professor at the University of Pittsburgh and the scientific spokesperson for the SDSS-III collaboration. “SDSS-III scientists work together to address big questions extending from our own galaxy to distant reaches of the universe and then they share all of that data with the world to allow anyone to make the next big discovery.”

Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.

James Devitt | Newswise Science News
Further information:
http://www.nyu.edu
http://www.sdss3.org/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>