Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D nanoparticle in atomic resolution

23.02.2011
For the first time, scientists from Empa and ETH Zurich have, in collaboration with a Dutch team, managed to measure the atomic structure of individual nanoparticles. The technique, recently published in «Nature», could help better understand the properties of nanoparticles in future.
In chemical terms, nanoparticles have different properties from their «big brothers and sisters»: they have a large surface area in relation to their tiny mass and at the same time a small number of atoms. This can produce quantum effects that lead to altered material properties. Ceramics made of nanomaterials can suddenly become bendy, for instance, or a gold nugget is gold-coloured while a nanosliver of it is reddish.

New method developed
The chemical and physical properties of nanoparticles are determined by their exact three-dimensional morphology, atomic structure and especially their surface composition. In a study initiated by ETH Zurich scientist Marta Rossell and Empa researcher Rolf Erni, the 3D structure of individual nanoparticles has now successfully been determined on the atomic level. The new technique could help improve our understanding of the characteristic of nanoparticles, including their reactivity and toxicity.

Gentle imaging processing
For their electron-microscopic study, which was published recently in the journal «Nature», Rossell and Erni prepared silver nanoparticles in an aluminium matrix. The matrix makes it easier to tilt the nanoparticles under the electron beam in different crystallographic orientations whilst protecting the particles from damage by the electron beam. The basic prerequisite for the study was a special electron microscope that reaches a maximum resolution of less than 50 picometres. By way of comparison: the diameter of an atom measures about one Ångström, i.e. 100 picometres.

To protect the sample further, the electron microscope was set up in such a way as to also yield images at an atomic resolution with a lower accelerating voltage, namely 80 kilovolts. Normally, this kind of microscope – of which there are only a few in the world – works at 200 – 300 kilovolts. The two scientists used a microscope at the Lawrence Berkeley National Laboratory in California for their experiments. The experimental data was complemented with additional electron-microscopic measurements carried out at Empa.

Sharper images
On the basis of these microscopic images, Sandra Van Aert from the University of Antwerp created models that «sharpened» the images and enabled them to be quantified: the refined images made it possible to count the individual silver atoms along different crystallographic directions.

For the three-dimensional reconstruction of the atomic arrangement in the nanoparticle, Rossell and Erni eventually enlisted the help of the tomography specialist Joost Batenburg from Amsterdam, who used the data to tomographically reconstruct the atomic structure of the nanoparticle based on a special mathematical algorithm. Only two images were sufficient to reconstruct the nanoparticle, which consists of 784 atoms. «Up until now, only the rough outlines of nanoparticles could be illustrated using many images from different perspectives», says Marta Rossell. Atomic structures, on the other hand, could only be simulated on the computer without an experimental basis.

«Applications for the method, such as characterising doped nanoparticles, are now on the cards», says Rolf Erni. For instance, the method could one day be used to determine which atom configurations become active on the surface of the nanoparticles if they have a toxic or catalytic effect. Rossell stresses that in principle the study can be applied to any type of nanoparticle. The prerequisite, however, is experimental data like that obtained in the study.

Author: Simone Ulmer/ETH Life

Dr. Rolf Erni | EurekAlert!
Further information:
http://www.empa.ch

Further reports about: 3-D image ETH Empa atomic structure electron microscope

More articles from Physics and Astronomy:

nachricht New proton record: Researchers measure magnetic moment with greatest possible precision
24.11.2017 | Johannes Gutenberg-Universität Mainz

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>