Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D nanoparticle in atomic resolution

23.02.2011
For the first time, scientists from Empa and ETH Zurich have, in collaboration with a Dutch team, managed to measure the atomic structure of individual nanoparticles. The technique, recently published in «Nature», could help better understand the properties of nanoparticles in future.
In chemical terms, nanoparticles have different properties from their «big brothers and sisters»: they have a large surface area in relation to their tiny mass and at the same time a small number of atoms. This can produce quantum effects that lead to altered material properties. Ceramics made of nanomaterials can suddenly become bendy, for instance, or a gold nugget is gold-coloured while a nanosliver of it is reddish.

New method developed
The chemical and physical properties of nanoparticles are determined by their exact three-dimensional morphology, atomic structure and especially their surface composition. In a study initiated by ETH Zurich scientist Marta Rossell and Empa researcher Rolf Erni, the 3D structure of individual nanoparticles has now successfully been determined on the atomic level. The new technique could help improve our understanding of the characteristic of nanoparticles, including their reactivity and toxicity.

Gentle imaging processing
For their electron-microscopic study, which was published recently in the journal «Nature», Rossell and Erni prepared silver nanoparticles in an aluminium matrix. The matrix makes it easier to tilt the nanoparticles under the electron beam in different crystallographic orientations whilst protecting the particles from damage by the electron beam. The basic prerequisite for the study was a special electron microscope that reaches a maximum resolution of less than 50 picometres. By way of comparison: the diameter of an atom measures about one Ångström, i.e. 100 picometres.

To protect the sample further, the electron microscope was set up in such a way as to also yield images at an atomic resolution with a lower accelerating voltage, namely 80 kilovolts. Normally, this kind of microscope – of which there are only a few in the world – works at 200 – 300 kilovolts. The two scientists used a microscope at the Lawrence Berkeley National Laboratory in California for their experiments. The experimental data was complemented with additional electron-microscopic measurements carried out at Empa.

Sharper images
On the basis of these microscopic images, Sandra Van Aert from the University of Antwerp created models that «sharpened» the images and enabled them to be quantified: the refined images made it possible to count the individual silver atoms along different crystallographic directions.

For the three-dimensional reconstruction of the atomic arrangement in the nanoparticle, Rossell and Erni eventually enlisted the help of the tomography specialist Joost Batenburg from Amsterdam, who used the data to tomographically reconstruct the atomic structure of the nanoparticle based on a special mathematical algorithm. Only two images were sufficient to reconstruct the nanoparticle, which consists of 784 atoms. «Up until now, only the rough outlines of nanoparticles could be illustrated using many images from different perspectives», says Marta Rossell. Atomic structures, on the other hand, could only be simulated on the computer without an experimental basis.

«Applications for the method, such as characterising doped nanoparticles, are now on the cards», says Rolf Erni. For instance, the method could one day be used to determine which atom configurations become active on the surface of the nanoparticles if they have a toxic or catalytic effect. Rossell stresses that in principle the study can be applied to any type of nanoparticle. The prerequisite, however, is experimental data like that obtained in the study.

Author: Simone Ulmer/ETH Life

Dr. Rolf Erni | EurekAlert!
Further information:
http://www.empa.ch

Further reports about: 3-D image ETH Empa atomic structure electron microscope

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>