Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D laser printing of whispering-gallery-mode microcavities

03.11.2015

Whispering-Gallery-Mode (WGM) microcavities that confine light in a small volume with high quality (Q) factors and enhance interaction of light with matters inside the cavity have shown promising applications as an element for a variety of devices such as micro-lasers, micro-sensors, micro-filters, and thus are becoming the basic building blocks of integrated photonic systems. This leads to tremendous progress in the development of micro-scale high-Q microcavity processing technologies.

In a review entitled "Femtosecond laser 3D fabrication of whispering-gallery-mode microcavities" by Huailiang Xu and Hongbo Sun at the State Key Laboratory on Integrated Optoelectronics, Jilin University, recent progress in femtosecond laser three-dimensional fabrications of optical WGM microcavities was overviewed. This review was published in SCIENCE CHINA Physics, Mechanics & Astronomy (volume 58, Issue 11).


These are microscope images of WGM microcavities fabricated by femtosecond laser 3-D processing.

Credit: ©Science China Press

Femtosecond laser direct writing has attracted a lot of attention in recent years, and demonstrated the versatility in fabrication of a variety of devices from micro-fluidics, optoelectronics, micro-electronics, micro-machines, micro-sensing, to micro-biomimetics and micro-optics, etc. However, the reports on the fabrication of high-Q WGM microcavities appeared only recently.

This review article began with a brief introduction of the basic principle of femtosecond laser processing, in which the 3D capability of high-quality micro-fabrication of femtosecond laser processing technique is discussed.

Subsequently, the fabrications of 3D passive and active WGMs microcavities in a variety of materials including polymer, glass and crystals were demonstrated (see Figure 1). The fabrication of the integrated device of a micro-sensor incorporated with WGM microcavity was also introduced.

They pointed out that fabricating microcavities with extremely high Q factors in the range of 108-1010 by using femtosecond laser direct writing is still challenging.

However, "it is believed," the two researchers said, "the further effort on the investigation of femtosecond laser 3D fabrication of high-Q factor microcavities will undoubtedly benefit the applications of microcavities in a broad spectrum from bio-sensing and optoelectronics to quantum information.."

###

This research was funded by the National Basic Research program of China (No.2014CB921302).

See the article:

XU HuaiLiang, SUN HongBo. Femtosecond laser 3D fabrication of whispering-gallery-mode microcavities. SCIENCE CHINA Physics, Mechanics & Astronomy, 2015, 58(11): 114202

http://phys.scichina.com:8083/sciGe/EN/abstract/abstract509981.shtml

http://link.springer.com/article/10.1007/s11433-015-5720-5

Xu Huailiang | EurekAlert!

Further reports about: 3-D Astronomy Physics Science Sun attention femtosecond laser processing quantum information

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>