Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From 2-trillion-degree heat, researchers create new matter -- and new questions

A worldwide team of researchers, including 10 from Texas A&M University, have for the first time created a particle that is believed to have been in existence immediately after the creation of the universe – the so-called "Big Bang" – and it could lead to new questions and answers about some of the basic laws of physics because in essence, it creates a new form of matter.

Researchers Carl Gagliardi, Saskia Mioduszewski, Robert Tribble, Matthew Cervantes, Rory Clarke, Martin Codrington, Pibero Djawotho, James Drachenberg, Ahmed Hamed and Liaoyuan Huo, all affiliated with the Texas A&M Cyclotron Institute, along with numerous researchers from universities and labs all over the world, have created the anti-hypertriton – a never-before-seen particle – by colliding gold nuclei at extremely high speeds. Their work is published in the current issue of Science Express.

Using the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory on Long Island, N.Y., the team used particles of gold and collided them just short of the speed of light (186,000 miles per second). More than 100 million collisions were made to collect the data.

"We know that some new particles of matter were formed immediately after the Big Bang, but they were gone within a millionth of a second or so," explains Gagliardi.

"By accelerating the gold (gold was selected because it is very heavy) at extremely high speeds, we were able to replicate the conditions right after the Big Bang. It's very much like when two cars collide at high speeds – you would have a lot of hot metal.

"At a temperature of about two trillion degrees, which is about 100,000 times hotter than the surface of the sun, we were able to produce a new form of matter."

As this new form of matter evolves, it expands and cools and eventually decays. When it does so, the majority of it converts back into ordinary matter, but a large amount converts into anti-matter instead, Gagliardi points out.

"This enables us to see things we have never seen before," Gagliardi adds.

"We found evidence of particles called anti-lambdas bound within the anti-nuclei. The anti-lambda has a lifetime of less than one-billionth of a second, which on a nuclear time scale, is actually a long amount of time. It gives us a framework to make sort of a 3D periodic table of the elements, from matter to anti-matter. This now gives us a new class of matter to study, one we think should be a mirror image of our world. But a big question is, how accurate is that mirror?"

Gagliardi says it's been known that the Big Bang made equal amounts of matter and anti-matter, but over time, something has tripped the balance for life to exist – there is more matter today than anti-matter.

"So why is this?" he asks.

"We may be able to answer these questions in the future."

Mioduszewski adds, "These new findings give us a large new source of hypernuclei. They provide us with a new way to study the forces that act inside atomic nuclei, and might teach us about the forces that act in the center of the neutron stars.

"This has opened up a very big door for us."

About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Contact: Keith Randall, News & Information Services, at (979) 845-4644 or or Carl Gagliardi at (979) 845-1411 or

For more news about Texas A&M University, go to

Follow us on Twitter at

Keith Randall | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>