Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 Solar System puzzles solved

26.07.2012
Comets and asteroids preserve the building blocks of our Solar System and should help explain its origin. But there are unsolved puzzles.

For example, how did icy comets obtain particles that formed at high temperatures, and how did these refractory particles acquire rims with different compositions? Carnegie's theoretical astrophysicist Alan Boss and cosmochemist Conel Alexander* are the first to model the trajectories of such particles in the unstable disk of gas and dust that formed the Solar System.

They found that these refractory particles could have been processed in the hot inner disk, and then traveled out to the frigid outer regions to end up in icy comets. Their meandering trips back and forth could help explain the different compositions of their rims. The research is published in Earth and Planetary Science Letters.

The young Sun is thought to have experienced a series of outbursts caused by the rapid infall of disk gas onto the Sun. The leading mechanism for explaining such outbursts is a phase of disk instability. The researchers modeled the trajectories of several hundred centimeter-sized melilite mineral particles during a phase of disk instability. These particles are similar to calcium-aluminum-rich inclusions (or CAIs), the refractory particles often found in well-preserved meteorites, as well as the comet Wild 2.

Their disk model assumed a marginally gravitationally unstable, fully three-dimensional disk, with a mass of about 5 % of today's Sun and temperatures ranging from a frigid -350 °F (60K) in the outer regions, to a scorching 2240 °F (1500K) near the center. Their calculations allowed the CAIs to orbit in the disk while being subjected to gas drag and the gravity of both the disk and the Sun.

The particles started orbiting in unison, but after about 20 years their trajectories started to diverge significantly. Most struck the inner boundary of the disk at 1 AU (the Earth/Sun distance), while others went to the outer boundary at 10 AU, where they could be swept up by a growing comet. About 10% migrated back and forth in the disk before hitting one or the other boundary.

The researchers then modeled the evaporation and condensation processes that the particles would experience during their migrations and found that such particles were likely to acquire outer rims with varied isotopic compositions recently shown to characterize CAIs.

"CAIs are thought to have formed at the very beginning of the Solar System. Our results show that they must have experienced remarkably complex histories as they were transported chaotically all over the disk," remarked Alexander.

These migrations could explain the different oxygen isotopes that have been found in particles from meteorites. These are varieties of oxygen atoms with different numbers of neutrons, which point to different processing conditions for the particle rims.

Previous work by Boss had shown that oxygen isotope abundances could vary in an unstable disk by the range found in meteorites. Coupled with the new results, these models show that several puzzles may have been solved—an unstable disk can explain both large-scale outward transport of refractory particles, as well as the peculiar rim compositions acquired during their journeys.

"It's nice to solve two problems at once," said Boss. "But there are still many more puzzles about meteorites for us to work on."

* The research also included colleague Morris Podolak at Tel Aviv University and was funded in part by NASA Origins of Solar Systems Program. The calculations were performed on the Carnegie Alpha Cluster supported in part by the NSF.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Alan Boss | EurekAlert!
Further information:
http://www.ciw.edu
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>