Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 Solar System puzzles solved

26.07.2012
Comets and asteroids preserve the building blocks of our Solar System and should help explain its origin. But there are unsolved puzzles.

For example, how did icy comets obtain particles that formed at high temperatures, and how did these refractory particles acquire rims with different compositions? Carnegie's theoretical astrophysicist Alan Boss and cosmochemist Conel Alexander* are the first to model the trajectories of such particles in the unstable disk of gas and dust that formed the Solar System.

They found that these refractory particles could have been processed in the hot inner disk, and then traveled out to the frigid outer regions to end up in icy comets. Their meandering trips back and forth could help explain the different compositions of their rims. The research is published in Earth and Planetary Science Letters.

The young Sun is thought to have experienced a series of outbursts caused by the rapid infall of disk gas onto the Sun. The leading mechanism for explaining such outbursts is a phase of disk instability. The researchers modeled the trajectories of several hundred centimeter-sized melilite mineral particles during a phase of disk instability. These particles are similar to calcium-aluminum-rich inclusions (or CAIs), the refractory particles often found in well-preserved meteorites, as well as the comet Wild 2.

Their disk model assumed a marginally gravitationally unstable, fully three-dimensional disk, with a mass of about 5 % of today's Sun and temperatures ranging from a frigid -350 °F (60K) in the outer regions, to a scorching 2240 °F (1500K) near the center. Their calculations allowed the CAIs to orbit in the disk while being subjected to gas drag and the gravity of both the disk and the Sun.

The particles started orbiting in unison, but after about 20 years their trajectories started to diverge significantly. Most struck the inner boundary of the disk at 1 AU (the Earth/Sun distance), while others went to the outer boundary at 10 AU, where they could be swept up by a growing comet. About 10% migrated back and forth in the disk before hitting one or the other boundary.

The researchers then modeled the evaporation and condensation processes that the particles would experience during their migrations and found that such particles were likely to acquire outer rims with varied isotopic compositions recently shown to characterize CAIs.

"CAIs are thought to have formed at the very beginning of the Solar System. Our results show that they must have experienced remarkably complex histories as they were transported chaotically all over the disk," remarked Alexander.

These migrations could explain the different oxygen isotopes that have been found in particles from meteorites. These are varieties of oxygen atoms with different numbers of neutrons, which point to different processing conditions for the particle rims.

Previous work by Boss had shown that oxygen isotope abundances could vary in an unstable disk by the range found in meteorites. Coupled with the new results, these models show that several puzzles may have been solved—an unstable disk can explain both large-scale outward transport of refractory particles, as well as the peculiar rim compositions acquired during their journeys.

"It's nice to solve two problems at once," said Boss. "But there are still many more puzzles about meteorites for us to work on."

* The research also included colleague Morris Podolak at Tel Aviv University and was funded in part by NASA Origins of Solar Systems Program. The calculations were performed on the Carnegie Alpha Cluster supported in part by the NSF.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Alan Boss | EurekAlert!
Further information:
http://www.ciw.edu
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>