Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 Earth-sized bodies with oxygen rich atmospheres found -- but they're stars not planets

13.11.2009
Astrophysicists find 2 Earth-sized bodies with oxygen rich atmospheres - only snag is they're stars not planets

Astrophysicists at the University of Warwick and Kiel University have discovered two earth sized bodies with oxygen rich atmospheres – however there is a bit of a disappointing snag for anyone looking for a potential home for alien life, or even a future home for ourselves, as they are not planets but are actually two unusual white dwarf stars.

The two white dwarf stars SDSS 0922+2928 and SDSS 1102+2054 are 400 and 220 light years from Earth. They are both the remnants of massive stars that are at the end of their stellar evolution having consumed all the material they had available for nuclear fusion.

Theoretical models suggest that massive stars (around 7 – 10 times the mass of our own Sun) will consume all of their hydrogen, helium and carbon, and end their lives either as white dwarfs with very oxygen-rich cores, or undergo a supernova and collapse into neutron stars. Finding such oxygen-rich white dwarfs would be an important confirmation of the models.

Unfortunately, almost all white dwarfs have hydrogen and/or helium envelopes that, while low in mass, are sufficiently thick to shield the core from direct view. However should such a core lose its remaining hydrogen envelope, astrophysicists could then detect an extremely oxygen-rich spectrum from the surface of the white dwarf.

Searching within an astronomical data set of the Sloan Digital Sky Survey (SDSS), the University of Warwick and Kiel University astrophysicists did indeed discover two white dwarfs with large atmospheric oxygen abundances.

Lead author on the paper, astrophysicist Dr. Boris Gänsicke from the University of Warwick, said:

"These surface abundances of oxygen imply that these are white dwarfs displaying their bare oxygen-neon cores, and that they may have descended from the most massive progenitors stars in that class."

Most stellar models producing white dwarfs with such oxygen and neon cores also predict that a sufficiently thick carbon-rich layer should surround the core and avoid upward diffusion of large amounts of oxygen. However, calculations also show that the thickness of this layer decreases the closer the progenitor star is to upper mass limit for stars ending their lives as white dwarfs. Hence one possibility for the formation of SDSS 0922+2928 and SDSS 1102+2054 is that they descended from the most massive stars avoiding core-collapse, in which case they would be expected to be very massive themselves. However current data is insufficient to provide any unambiguous measure of the masses of these two unusual white dwarves.

The full paper "Two white dwarfs with oxygen-rich atmospheres" will be published online by the journal Science on November 12th 2009 at 2pm EST and is written by Dr Boris Gänsicke, Jonathan Girven, Professor Tom Marsh, and Dr Danny Steeghs all of Department of Physics at University of Warwick in the UK and Detlev Koester of the University of Kiel in Germany.

Copies of the embargoed Science paper are available to reporters from the AAAS Office of Public - contact +1-202-326-6440 or scipak@aaas.org

For further information please contact:

Dr Boris Gänsicke, Department of Physics , University of Warwick
+44 (0)2476 574741
Boris.Gaensicke@warwick.ac.uk
Peter Dunn, Head of Communications
Communications Office, University of Warwick,
+44 (0)24 76 523708 or +44 (0)7767 655860
email: p.j.dunn@warwick.ac.uk

Dr. Boris Gänsicke | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Physics and Astronomy:

nachricht Extremely fine measurements of motion in orbiting supermassive black holes
28.06.2017 | Stanford University

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>