Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


2 Earth-sized bodies with oxygen rich atmospheres found -- but they're stars not planets

Astrophysicists find 2 Earth-sized bodies with oxygen rich atmospheres - only snag is they're stars not planets

Astrophysicists at the University of Warwick and Kiel University have discovered two earth sized bodies with oxygen rich atmospheres – however there is a bit of a disappointing snag for anyone looking for a potential home for alien life, or even a future home for ourselves, as they are not planets but are actually two unusual white dwarf stars.

The two white dwarf stars SDSS 0922+2928 and SDSS 1102+2054 are 400 and 220 light years from Earth. They are both the remnants of massive stars that are at the end of their stellar evolution having consumed all the material they had available for nuclear fusion.

Theoretical models suggest that massive stars (around 7 – 10 times the mass of our own Sun) will consume all of their hydrogen, helium and carbon, and end their lives either as white dwarfs with very oxygen-rich cores, or undergo a supernova and collapse into neutron stars. Finding such oxygen-rich white dwarfs would be an important confirmation of the models.

Unfortunately, almost all white dwarfs have hydrogen and/or helium envelopes that, while low in mass, are sufficiently thick to shield the core from direct view. However should such a core lose its remaining hydrogen envelope, astrophysicists could then detect an extremely oxygen-rich spectrum from the surface of the white dwarf.

Searching within an astronomical data set of the Sloan Digital Sky Survey (SDSS), the University of Warwick and Kiel University astrophysicists did indeed discover two white dwarfs with large atmospheric oxygen abundances.

Lead author on the paper, astrophysicist Dr. Boris Gänsicke from the University of Warwick, said:

"These surface abundances of oxygen imply that these are white dwarfs displaying their bare oxygen-neon cores, and that they may have descended from the most massive progenitors stars in that class."

Most stellar models producing white dwarfs with such oxygen and neon cores also predict that a sufficiently thick carbon-rich layer should surround the core and avoid upward diffusion of large amounts of oxygen. However, calculations also show that the thickness of this layer decreases the closer the progenitor star is to upper mass limit for stars ending their lives as white dwarfs. Hence one possibility for the formation of SDSS 0922+2928 and SDSS 1102+2054 is that they descended from the most massive stars avoiding core-collapse, in which case they would be expected to be very massive themselves. However current data is insufficient to provide any unambiguous measure of the masses of these two unusual white dwarves.

The full paper "Two white dwarfs with oxygen-rich atmospheres" will be published online by the journal Science on November 12th 2009 at 2pm EST and is written by Dr Boris Gänsicke, Jonathan Girven, Professor Tom Marsh, and Dr Danny Steeghs all of Department of Physics at University of Warwick in the UK and Detlev Koester of the University of Kiel in Germany.

Copies of the embargoed Science paper are available to reporters from the AAAS Office of Public - contact +1-202-326-6440 or

For further information please contact:

Dr Boris Gänsicke, Department of Physics , University of Warwick
+44 (0)2476 574741
Peter Dunn, Head of Communications
Communications Office, University of Warwick,
+44 (0)24 76 523708 or +44 (0)7767 655860

Dr. Boris Gänsicke | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>