Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 Earth-sized bodies with oxygen rich atmospheres found -- but they're stars not planets

13.11.2009
Astrophysicists find 2 Earth-sized bodies with oxygen rich atmospheres - only snag is they're stars not planets

Astrophysicists at the University of Warwick and Kiel University have discovered two earth sized bodies with oxygen rich atmospheres – however there is a bit of a disappointing snag for anyone looking for a potential home for alien life, or even a future home for ourselves, as they are not planets but are actually two unusual white dwarf stars.

The two white dwarf stars SDSS 0922+2928 and SDSS 1102+2054 are 400 and 220 light years from Earth. They are both the remnants of massive stars that are at the end of their stellar evolution having consumed all the material they had available for nuclear fusion.

Theoretical models suggest that massive stars (around 7 – 10 times the mass of our own Sun) will consume all of their hydrogen, helium and carbon, and end their lives either as white dwarfs with very oxygen-rich cores, or undergo a supernova and collapse into neutron stars. Finding such oxygen-rich white dwarfs would be an important confirmation of the models.

Unfortunately, almost all white dwarfs have hydrogen and/or helium envelopes that, while low in mass, are sufficiently thick to shield the core from direct view. However should such a core lose its remaining hydrogen envelope, astrophysicists could then detect an extremely oxygen-rich spectrum from the surface of the white dwarf.

Searching within an astronomical data set of the Sloan Digital Sky Survey (SDSS), the University of Warwick and Kiel University astrophysicists did indeed discover two white dwarfs with large atmospheric oxygen abundances.

Lead author on the paper, astrophysicist Dr. Boris Gänsicke from the University of Warwick, said:

"These surface abundances of oxygen imply that these are white dwarfs displaying their bare oxygen-neon cores, and that they may have descended from the most massive progenitors stars in that class."

Most stellar models producing white dwarfs with such oxygen and neon cores also predict that a sufficiently thick carbon-rich layer should surround the core and avoid upward diffusion of large amounts of oxygen. However, calculations also show that the thickness of this layer decreases the closer the progenitor star is to upper mass limit for stars ending their lives as white dwarfs. Hence one possibility for the formation of SDSS 0922+2928 and SDSS 1102+2054 is that they descended from the most massive stars avoiding core-collapse, in which case they would be expected to be very massive themselves. However current data is insufficient to provide any unambiguous measure of the masses of these two unusual white dwarves.

The full paper "Two white dwarfs with oxygen-rich atmospheres" will be published online by the journal Science on November 12th 2009 at 2pm EST and is written by Dr Boris Gänsicke, Jonathan Girven, Professor Tom Marsh, and Dr Danny Steeghs all of Department of Physics at University of Warwick in the UK and Detlev Koester of the University of Kiel in Germany.

Copies of the embargoed Science paper are available to reporters from the AAAS Office of Public - contact +1-202-326-6440 or scipak@aaas.org

For further information please contact:

Dr Boris Gänsicke, Department of Physics , University of Warwick
+44 (0)2476 574741
Boris.Gaensicke@warwick.ac.uk
Peter Dunn, Head of Communications
Communications Office, University of Warwick,
+44 (0)24 76 523708 or +44 (0)7767 655860
email: p.j.dunn@warwick.ac.uk

Dr. Boris Gänsicke | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>