Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

15 new planets confirmed around cool dwarf stars

12.03.2018

A new planet near the habitable zone around a bright cool star

Scientists report the existence of 15 new planets -- including one 'super-Earth' that could harbor liquid water -- orbiting small, cool stars near our solar system. These stars, known as red dwarfs[1], are of enormous interest for studies of planetary formation and evolution.


This is an imaginary picture.

Credit: Tokyo Institute of Technology

A research team led by Teruyuki Hirano of Tokyo Institute of Technology's Department of Earth and Planetary Sciences has validated 15 exoplanets[2] orbiting red dwarf systems.

One of the brightest red dwarfs, K2-155 that is around 200 light years away from Earth, has three transiting super-Earths, which are slightly bigger than our own planet. Of those three super-Earths, the outermost planet, K2-155d, with a radius 1.6 times that of Earth, could be within the host star's habitable zone[3].

The findings, published in the form of two papers in The Astronomical Journal, are based on data from NASA Kepler spacecraft's second mission, K2, and follow-up observations using ground-based telescopes, including the Subaru Telescope in Hawaii and the Nordic Optical Telescope (NOT) in Spain.

The researchers found that K2-155d could potentially have liquid water on its surface based on three-dimensional global climate simulations (see Figure 1). Hirano expresses both excitement and restraint, as he says: "In our simulations, the atmosphere and the composition of the planet were assumed to be Earth-like, and there's no guarantee that this is the case."

A more precise estimate of the radius and temperature of the K2-155 star would be needed to conclude definitively whether K2-155d is habitable. Achieving such precision would require further studies, for example, using interferometric techniques.

A key outcome from the current studies was that planets orbiting red dwarfs may have remarkably similar characteristics to planets orbiting solar-type stars.

"It's important to note that the number of planets around red dwarfs is much smaller than the number around solar-type stars," says Hirano. "Red dwarf systems, especially coolest red dwarfs, are just beginning to be investigated, so they are very exciting targets for future exoplanet research."

For example, while the so-called radius gap[4] of planets around solar-type stars has been reported previously, this is the first time that researchers have shown a similar gap in planets around red dwarfs. (See Figure 2.) "This is a unique finding, and many theoretical astronomers are now investigating what causes this gap," says Hirano.

He adds that the most likely explanation for the lack of large planets in the proximity of host stars is photoevaporation, which can strip away the envelope of the planetary atmosphere.

The researchers also investigated the relationship between planet radius and metallicity[5] of the host star. "Large planets are only discovered around metal-rich stars," Hirano says, "and what we found was consistent with our predictions. The few planets with a radius about three times that of Earth were found orbiting the most metal-rich red dwarfs."

The studies were conducted as part of the KESPRINT collaboration, a group formed by the merger of KEST (Kepler Exoplanet Science Team) and ESPRINT (Equipo de Seguimiento de Planetas Rocosos Intepretando sus Transitos) in 2016.

With the planned launch of NASA's Transiting Exoplanet Survey Satellite (TESS) in April 2018, Hirano is hopeful that even more planets will be discovered. "TESS is expected to find many candidate planets around bright stars closer to Earth," he says. "This will greatly facilitate follow-up observations, including investigation of planetary atmospheres and determining the precise orbit of the planets."

###

Technical terms

[1] Red dwarfs: Also known as low-mass stars, red dwarfs are small, cool stars with a surface temperature of less than about 4,000 Kelvin.

[2] Exoplanets: Planets that orbit stars outside our solar system.

[3] Habitable zone: A region that is neither too hot nor too cold for liquid water, and hence life, to exist.

[4] Radius gap: Here referring to a reduced occurrence of planets that have a radius of between 1.5 to 2.0 times that of Earth.

[5] Metallicity: The amount of metal found in a star.

Related links

https://educ.titech.ac.jp/eps/eng/

http://www.geo.titech.ac.jp/lab/sato/hirano/ (Japanese only)

https://tess.gsfc.nasa.gov

Media Contact

Emiko Kawaguchi
media@jim.titech.ac.jp
81-357-342-975

http://www.titech.ac.jp/english/index.html 

Emiko Kawaguchi | EurekAlert!

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>