Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The 15-Minute Genome 2009 Industrial Physics Forum features faster, cheaper genome sequencing

In the race for faster, cheaper ways to read human genomes, Pacific Biosciences is hoping to set a new benchmark with technology that watches DNA being copied in real time. The device is being developed to sequence DNA at speeds 20,000 times faster than second-generation sequencers currently on the market and will ultimately have a price tag of $100 per genome.

Chief Technology Officer Stephen Turner of Pacific Biosciences will discuss Single Molecule Real-Time (SMRT) sequencing, due to be released commercially in 2010, at the 2009 Industrial Physics Forum, a component of the 51st Annual Meeting of American Association of Physicists in Medicine, which takes place from July 26 - 30 in Anaheim, California

A decade ago, it took Celera Genomics and the Human Genome Project years to sequence complete human genomes. In 2008, James Watson's entire genetic code was read by a new generation of technology in months. SMRT sequencing aims to eventually accomplish the same feat in minutes.

The method used in the Human Genome Project, Sanger sequencing, taps into the cell's natural machinery for replicating DNA. The enzyme DNA polymerase is used to copy strands of DNA, creating billions of fragments of varying length. Each fragment -- a chain of building blocks called nucleotides -- ends with a tiny fluorescent molecule that identifies only the last nucleotide in the chain. By lining these fragments up according to length, their glowing tips can be read off like letters on a page.

Instead of inspecting DNA copies after polymerase has done its work, SMRT sequencing watches the enzyme in real time as it races along and copies an individual strand stuck to the bottom of a tiny well. Every nucleotide used to make the copy is attached to its own fluorescent molecule that lights up when the nucleotide is incorporated. This light is spotted by a detector that identifies the color and the nucleotide -- A, C, G, or T.

By repeating this process simultaneously in many wells, the technology hopes to bring about a substantial boost in sequencing speed. "When we reach a million separate molecules that we're able to sequence at once … we'll be able to sequence the entire human genome in less than 15 minutes," said Turner.

The speed of the reaction is currently limited by the ability of the detector to keep up with the polymerase. The first commercial instrument will operate at three to five bases per second, and Turner reports that lab tests have achieved 10 bases per second. The polymerase has the potential to go much faster, up to hundreds of bases per second. "To push past 50 bases per second, we will need brighter fluorescent reporters or more sensitive detection," says Turner.

The device also has the potential to reduce the number of errors made in DNA sequencing. Current technologies achieve an accuracy of 99.9999 percent (three thousand errors in a genome of three billion base pairs). "For cancer, you need to be able to spot a single mutation in the genome," said Turner. Because the errors made by SMRT sequencing are random -- not systematically occurring at the same spot -- they are more likely to disappear as the procedure is repeated.


Main Meeting Web site:
Search Meeting Abstracts:
Meeting program:
AAPM home page:
Background article about how medical physics has revolutionized medicine:


For each of the past 51 years, the Industrial Physics Forum has brought together industry, academic, and government leaders to examine applications of scientific research to emerging industrial R&D activities. This year's IPF is themed, "Frontiers in Quantitative Imaging for Cancer Detection and Treatment" and will be held in conjunction with the 51st Annual Meeting of the American Association of Physicists in Medicine (AAPM) on July 26 - 30, 2009 in Anaheim, CA. Embedded into the AAPM Scientific Program, the IPF sessions will be on Monday and Tuesday, July 27 - 28. During each IPF, a special session is dedicated to Frontiers in Physics, addressing the most exciting research going on today, regardless of field. In Anaheim, there will be speakers on next-generation DNA sequencers, on opto-genetics for brain imaging, and on how accelerator and particle physics enable some of the latest medical applications.


If you ever had a mammogram, ultrasound, X-ray, MRI, PET scan, or known someone treated for cancer, chances are reasonable that a medical physicist was working behind the scenes to make sure the imaging procedure was as effective as possible. Medical physicists help to develop new imaging techniques, improve existing ones, and assure the safety of radiation used in medical procedures in radiology, radiation oncology and nuclear medicine. They collaborate with radiation oncologists to design cancer treatment plans. They provide routine quality assurance and quality control on radiation equipment and procedures to ensure that cancer patients receive the prescribed dose of radiation to the correct location. They also contribute to the development of physics intensive therapeutic techniques, such as the stereotactic radiosurgery and prostate seed implants for cancer to name a few. The annual AAPM meeting is a great resource, providing guidance to physicists to implement the latest and greatest technology in a community hospital close to you.


The American Association of Physicists in Medicine (AAPM) is a scientific, educational, and professional organization of more than 6,000 medical physicists. Headquarters are located at the American Center for Physics in College Park, MD. Publications include a scientific journal (Medical Physics), technical reports, and symposium proceedings. See:

Devin Powell | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>