Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What to do with 15 million gigabytes of data

03.11.2008
When it is fully up and running, the four massive detectors on the new Large Hadron Collider (LHC) at the CERN particle-physics lab near Geneva are expected to produce up to 15 million gigabytes, aka 15 petabytes, of data every year.

Andreas Hirstius, manager of CERN Openlab and the CERN School of Computing, explains in November’s Physics World how computer scientists have risen to the challenge of dealing with this unprecedented volume of data.

When CERN staff first considered how they might deal with the large volume of data that the huge collider would produce when its two beams of protons collide, in the mid-1990s, a single gigabyte of disk space still cost a few hundred dollars and CERN’s total external connectivity was equivalent to just one of today’s broadband connections.

It quickly became clear that computing power at CERN, even taking Moore’s Law into account, would be significantly less than that required to analyse LHC data. The solution, it transpired during the 1990s, was to turn to "high-throughput computing" where the focus is not on shifting data as quickly as possible from A to B but rather from shifting as much information as possible between those two points.

High-performance computing is ideal for particle physics because the data produced in the millions of proton-proton collisions are all independent of one another - and can therefore be handled independently. So, rather than using a massive all-in-one mainframe supercomputer to analyse the results, the data can be sent to separate computers, all connected via a network.

From here sprung the LHC Grid. The Grid, which was officially inaugurated last month, is a tiered structure centred on CERN (Tier-0), which is connected by superfast fibre links to 11 Tier-1 centres at places like the Rutherford Appleton Laboratory (RAL) in the UK and Fermilab in the US. More than one CD's worth of data (about 700 MB) can be sent down these fibres to each of the Tier-1 centres every second.

Tier 1 centres then feed down to another 250 regional Tier-2 centres that are in turn accessed by individual researchers through university computer clusters and desktops and laptops (Tier-3).

As Andreas Hirstius writes, “The LHC challenge presented to CERN’s computer scientists was as big as the challenges to its engineers and physicists. The computer scientists managed to develop a computing infrastructure that can handle huge amounts of data, thereby fulfilling all of the physicists’ requirements and in some cases even going beyond them.”

Also in this issue:

• President George W Bush’s science adviser, the physicist John H Marburger, asks whether Bush’s eight years in office have been good for science in the US.

• Brian Cox may be the media-friendly face of particle physics, but how does the former D:Ream pop star, now a Manchester University physics professor, find the time for both research and his outreach work?

• Beauty and the beast: in his 100th column for Physics World, Robert P Crease asks whether CERN’s Large Hadron Collider, the biggest experiment of all time, can be dubbed “beautiful”.

Joe Winters | alfa
Further information:
http://www.physicsworld.com

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>