Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

15,000 beams of light

02.08.2010
Pens that write with light offer low-cost, rapid nanofabrication capabilities

One Chicago skyline is dazzling enough. Now imagine 15,000 of them.

A Northwestern University research team has done just that -- drawing 15,000 identical skylines with tiny beams of light using an innovative nanofabrication technology called beam-pen lithography (BPL).

Details of the new method, which could do for nanofabrication what the desktop printer has done for printing and information transfer, will be published Aug. 1 by the journal Nature Nanotechnology.

The Northwestern technology offers a means to rapidly and inexpensively make and prototype circuits, optoelectronics and medical diagnostics and promises many other applications in the electronics, photonics and life sciences industries.

"It's all about miniaturization," said Chad A. Mirkin, George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and director of Northwestern's International Institute for Nanotechnology. "Rapid and large-scale transfer of information drives the world. But conventional micro- and nanofabrication tools for making structures are very expensive. We are trying to change that with this new approach to photolithography and nanopatterning."

Using beam-pen lithography, the researchers patterned 15,000 replicas of the Chicago skyline (featuring the Willis Tower and the John Hancock Center) simultaneously in about half an hour. Fifteen thousand tiny pens deposit the skylines over square centimeters of space. Conventional nanopatterning technologies, such as electron-beam lithography, allow one to make similarly small structures but are inherently low throughput and do not allow one to do large-area nanofabrication.

Each skyline pattern is made up of 182 dots, with each dot approximately 500 nanometers in diameter, like each pen tip. The time of light exposure for each dot was 20 seconds. The current method allows researchers to make structures as small as 150 nanometers, but refinements of the pen architecture likely will increase resolution to below 100 nanometers. (Although not reported in the paper, the researchers have created an array of 11 million pens in an area only a few centimeters square.)

Beam-pen lithography is the third type of "pen" in Mirkin's nanofabrication arsenal. He developed polymer-pen lithography (PPL) in 2008 and Dip-Pen Nanolithography (DPN) in 1999, both of which deliver chemical materials to a surface and have since been commercialized into research-grade nanofabrication tools that are now used in 23 countries around the world.

Like PPL, beam-pen lithography uses an array of tiny pens made of a polymer to print patterns over large areas with nanoscopic through macroscopic resolution. But instead of using an "ink" of molecules, BPL draws patterns using light on a light-sensitive material.

Each pen is in the shape of a pyramid, with the point as its tip. The researchers coat the pyramids with a very thin layer of gold and then remove a tiny amount of gold from each tip. The large open tops of the pyramids (the back side of the array) are exposed to light, and the gold-plated pyramids channel the light to the tips. A fine beam of light comes from each tip, where the gold was removed, exposing the light-sensitive material at each point. This allows the researchers to print patterns with great precision and ease.

"Another advantage is that we don't have to use all the pens at once -- we can shut some off and turn on others," said Mirkin, who also is professor of medicine and professor of materials science and engineering. "Because the tops of the pyramids are on the microscale, we can control each individual tip."

Beam-pen lithography could lead to the development of a desktop printer of sorts for nanofabrication, giving individual researchers a great deal of control of their work.

"Such an instrument would allow researchers at universities and in the electronics industry around the world to rapidly prototype -- and possibly produce -- high-resolution electronic devices and systems right in the lab," Mirkin said. "They want to test their patterns immediately, not have to wait for a third-party to produce prototypes, which is what happens now."

The title of the Nature Nanotechnology paper is "Beam-pen Nanolithography." In addition to Mirkin, other authors of the paper are Fengwei Huo, Gengfeng Zheng, Xing Liao, Louise R. Giam, Jinan Chai, Xiaodong Chen and Wooyoung Shim, all from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>