Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1,2,3, Many - How Few Particles Turn into a ‘Heap’

25.10.2013
Heidelberg physicists observe the formation of a many-body system in experiment

How large does a group of particles have to be to render moot its exact number of particles?

In experiments using ultracold atoms, Heidelberg physicists succeeded in observing the transition to a many-body system well described by an infinite number of particles. In philosophy, this problem is known as the sorites paradox. The essential question is when a collection of elements forms a "heap".

The experiments were conducted by researchers of Heidelberg University under the direction of Prof. Dr. Selim Jochim at the Max Planck Institute for Nuclear Physics. The results of the research were published in "Science".

"Systems comprising many particles are generally extremely difficult to describe in a microscopically exact way. Hence researchers tend to work with effective theories that look not at the individual particles, such as gas molecules in the air, but at macroscopic values such as pressure or temperature," explains Jochim. The Heidelberg researchers prepared the systems so small they could still be described microscopically. Starting with a single atom, the scientists increased the number of particles one by one.

The energy of the entire system was measured with each added particle. The experiments ultimately showed that for the system under study very few atoms were needed to apply the theory derived for an infinitely large system. "We can identify this as the direct transition from a few-body system into a many-body system. Simply put, in our system it takes only about four atoms to form a 'heap' in the sense of the sorites paradox," continues the Heidelberg physicist.

Two years ago Jochim's team was able to reproducibly control the system used for the current experiments in all of its properties, including the exact number of particles, their state of motion and their interaction. "To date we are the only research team in the world able to prepare such systems," Prof. Jochim points out. "For the first time, these results realise our vision to gain a much deeper insight into the nature of fundamental few-body systems by these experiments.

Original publication:
A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim: From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, Vol. 342 no. 6157 pp. 457-460, 25 October 2013, doi: 10.1126/science.1240516
Note to Newsrooms:
An infographic is available from the Press Office.
Contact:
Prof. Dr. Selim Jochim
Institute for Physics
Phone: (06221) 54-19472
jochim@uni-heidelberg.de
Communications and Marketing
Press Office
Phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>