Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1,2,3, Many - How Few Particles Turn into a ‘Heap’

25.10.2013
Heidelberg physicists observe the formation of a many-body system in experiment

How large does a group of particles have to be to render moot its exact number of particles?

In experiments using ultracold atoms, Heidelberg physicists succeeded in observing the transition to a many-body system well described by an infinite number of particles. In philosophy, this problem is known as the sorites paradox. The essential question is when a collection of elements forms a "heap".

The experiments were conducted by researchers of Heidelberg University under the direction of Prof. Dr. Selim Jochim at the Max Planck Institute for Nuclear Physics. The results of the research were published in "Science".

"Systems comprising many particles are generally extremely difficult to describe in a microscopically exact way. Hence researchers tend to work with effective theories that look not at the individual particles, such as gas molecules in the air, but at macroscopic values such as pressure or temperature," explains Jochim. The Heidelberg researchers prepared the systems so small they could still be described microscopically. Starting with a single atom, the scientists increased the number of particles one by one.

The energy of the entire system was measured with each added particle. The experiments ultimately showed that for the system under study very few atoms were needed to apply the theory derived for an infinitely large system. "We can identify this as the direct transition from a few-body system into a many-body system. Simply put, in our system it takes only about four atoms to form a 'heap' in the sense of the sorites paradox," continues the Heidelberg physicist.

Two years ago Jochim's team was able to reproducibly control the system used for the current experiments in all of its properties, including the exact number of particles, their state of motion and their interaction. "To date we are the only research team in the world able to prepare such systems," Prof. Jochim points out. "For the first time, these results realise our vision to gain a much deeper insight into the nature of fundamental few-body systems by these experiments.

Original publication:
A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim: From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, Vol. 342 no. 6157 pp. 457-460, 25 October 2013, doi: 10.1126/science.1240516
Note to Newsrooms:
An infographic is available from the Press Office.
Contact:
Prof. Dr. Selim Jochim
Institute for Physics
Phone: (06221) 54-19472
jochim@uni-heidelberg.de
Communications and Marketing
Press Office
Phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>