Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Zombie' stars key to measuring dark energy

01.07.2011
"Zombie" stars that explode like bombs as they die, only to revive by sucking matter out of other stars. According to an astrophysicist at UC Santa Barbara, this isn't the plot for the latest 3D blockbuster movie. Instead, it's something that happens every day in the universe –– something that can be used to measure dark energy.

This special category of stars, known as Type Ia supernovae, help to probe the mystery of dark energy, which scientists believe is related to the expansion of the universe.


This is a Chandra X-ray image of Tycho's supernova remnant. This Type Ia sueprnova was observed by Tycho Brahe in 1572, and today is just an expanding ball of gas. Astronomers used to have to wait years for a close, bright supernova to learn about them. Today big surveys are discovering supernovae by the thousands. Credit: NASA/Chandra X-ray Observatory

Andy Howell, adjunct professor of physics at UCSB and staff scientist at Las Cumbres Observatory Global Telescope Network (LCOGT), wrote a review article about this topic, published recently in Nature Communications. LCOGT, a privately funded global network of telescopes, works closely with UCSB.

Supernovae are stars that have been observed since 1054 A.D., when an exploding star formed the crab nebula, a supernova remnant.

More recently, the discovery of dark energy is one of the most profound findings of the last half-century, according to Howell. Invisible dark energy makes up about three-fourths of the universe. "We only discovered this about 20 years ago by using Type Ia supernovae, thermonuclear supernovae, as standard or 'calibrated' candles," said Howell. "These stars are tools for measuring dark energy. They're all about the same brightness, so we can use them to figure out distances in the universe."

These supernovae are so bright that they shine with the approximate power of a billion suns, noted Howell.

He calls Type Ia supernovae "zombie" stars because they're dead, with a core of ash, but they come back to life by sucking matter from a companion star. Over the past 50 years, astrophysicists have discovered that Type Ia supernovae are part of binary systems –– two stars orbiting each other. The one that explodes is a white dwarf star. "That's what our sun will be at the end of its life," he said. "It will have the mass of the sun crammed into the size of the Earth."

The white dwarf stars that tend to explode as Type Ia supernovae have approximately the same mass. This was considered a fundamental limit of physics, according to Howell. However, in an article in Nature about five years ago, Howell reported his discovery of stars that go beyond this limit. These previously unknown Type Ia supernovae have more than typical mass before they explode –– a fact that confounds scientists.

Howell presented a hypothesis to understand this new class of objects. "One idea is that two white dwarfs could have merged together; the binary system could be two white dwarf stars," he said. "Then, over time, they spiral into each other and merge. When they merge, they blow up. This may be one way to explain what is going on."

Astrophysicists are using Type Ia supernovae to build a map of the history of the universe's expansion. "What we've found is that the universe hasn't been expanding at the same rate," said Howell. "And it hasn't been slowing down as everyone thought it would be, due to gravity. Instead, it has been speeding up. There's a force that counteracts gravity and we don't know what it is. We call it dark energy."

The new findings relate to Einstein's concept of the cosmological constant. This is a term he added into his equations to make them valid. However, Einstein did it because he thought the universe was static; he didn't know the universe was expanding. When it was revealed that the universe is expanding, Einstein believed this concept was his biggest blunder. "It turns out that this cosmological constant was actually one of his greatest successes," said Howell. "This is because it's what we need now to explain the data."

He said that dark energy is probably a property of space. "Space itself has some energy associated with it," said Howell. "That's what the results seem to indicate, that dark energy is distributed everywhere in space. It looks like it's a property of the vacuum, but we're not completely sure. We're trying to figure out how sure are we of that –– and if we can improve Type Ia supernovae as standard candles we can make our measurements better."

Throughout history, people have noticed a few supernovae so bright they could be seen with the naked eye. With telescopes, astronomers have discovered supernovae farther away. "Now we have huge digital cameras on our telescopes, and really big telescopes," said Howell, "We've been able to survey large parts of the sky, regularly. We find supernovae daily." Astronomers have discovered thousands of supernovae in recent years.

During his career, Howell has used these powerful telescopes to study supernovae. Currently, besides teaching at UCSB, he is involved in LCOGT's detailed study of supernovae that is aimed at helping to understand dark energy. With this extensive network of observatories, it will be possible to study the night sky continuously.

"The next decade holds real promise of making serious progress in the understanding of nearly every aspect of supernovae Ia, from their explosion physics, to their progenitors, to their use as standard candles," writes Howell in Nature Communications. "And with this knowledge may come the key to unlocking the darkest secrets of dark energy."

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>