Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Slow light' on a chip holds promise for optical communications

06.09.2010
A tiny optical device built into a silicon chip has achieved the slowest light propagation on a chip to date, reducing the speed of light by a factor of 1,200 in a study reported in Nature Photonics (published online September 5 and in the November print issue).

The ability to control light pulses on an integrated chip-based platform is a major step toward the realization of all-optical quantum communication networks, with potentially vast improvements in ultra-low-power performance. Holger Schmidt, professor of electrical engineering in the Baskin School of Engineering at the University of California, Santa Cruz, leads the team of researchers at UC Santa Cruz and Brigham Young University that developed the new device.

"Slow light and other quantum coherence effects have been known for quite awhile, but in order to use them in practical applications we have to be able to implement them on a platform that can be mass-produced and will work at room temperature or higher, and that's what our chips accomplish," Schmidt said.

Whereas optical fibers routinely transmit data at light speed, routing and data processing operations still require converting light signals to electronic signals. All-optical data processing will require compact, reliable devices that can slow, store, and process light pulses.

"The simplest example of how slow light can be used is to provide a data buffer or tunable signal delay in an optical network, but we are looking beyond that with our integrated photonic chip," Schmidt said.

The device relies on quantum interference effects in a rubidium vapor inside a hollow-core optical waveguide that is built into a silicon chip using standard manufacturing techniques. It builds on earlier work by Schmidt and his collaborators that enabled them to perform atomic spectroscopy on a chip (http://press.ucsc.edu/text.asp?pid=1356). The first author of the new paper is Bin Wu, a graduate student in electrical engineering at UCSC. The coauthors include John Hulbert, Evan Lunt, Katie Hurd, and Aaron Hawkins of Brigham Young University.

Several different techniques have been used to slow light to a crawl and even bring it to a complete halt for a few hundredths of a millisecond. Previously, however, systems based on quantum interference required low temperatures or laboratory setups too elaborate for practical use. In 2008, researchers at NTT Laboratories in Japan developed a specially structured silicon chip that could slow light pulses by a factor of 170. Called a photonic crystal waveguide, it has advantages for certain applications, but it does not produce the quantum effects of the atomic spectroscopy chip developed by Schmidt's group.

Those quantum effects produce not only slow light but other interactions between light and matter that raise the possibility of radically new optical devices for quantum computing and quantum communication systems, according to Schmidt. In addition, the system makes it easy to turn the effect on and off and tune it to the desired speed of light.

"By changing the power of a control laser, we can change the speed of light--just by turning the power control knob," he said.

The control laser modifies the optical properties of the rubidium vapor in the hollow-core waveguide. Under the combined action of two laser fields (control and signal), electrons in the rubidium atoms are transferred into a coherent superposition of two quantum states. In the strange world of quantum physics, they exist in two different states at the same time. One result is an effect known as electromagnetically induced transparency, which is key to producing slow light.

"Normally, the rubidium vapor absorbs the light from the signal laser, so nothing gets through. Then you turn on the control laser and boom, the material becomes transparent and the signal pulse not only makes it through, but it also moves significantly more slowly," Schmidt said.

This study is the first demonstration of electromagnetically induced transparency and slow light on a fully self-contained atomic spectroscopy chip.

"This has implications for looking at nonlinear optical effects beyond slow light," Schmidt said. "We can potentially use this to create all-optical switches, single-photon detectors, quantum memory devices, and other exciting possibilities."

This research was funded by the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation (NSF).

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>