Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Slow light' on a chip holds promise for optical communications

06.09.2010
A tiny optical device built into a silicon chip has achieved the slowest light propagation on a chip to date, reducing the speed of light by a factor of 1,200 in a study reported in Nature Photonics (published online September 5 and in the November print issue).

The ability to control light pulses on an integrated chip-based platform is a major step toward the realization of all-optical quantum communication networks, with potentially vast improvements in ultra-low-power performance. Holger Schmidt, professor of electrical engineering in the Baskin School of Engineering at the University of California, Santa Cruz, leads the team of researchers at UC Santa Cruz and Brigham Young University that developed the new device.

"Slow light and other quantum coherence effects have been known for quite awhile, but in order to use them in practical applications we have to be able to implement them on a platform that can be mass-produced and will work at room temperature or higher, and that's what our chips accomplish," Schmidt said.

Whereas optical fibers routinely transmit data at light speed, routing and data processing operations still require converting light signals to electronic signals. All-optical data processing will require compact, reliable devices that can slow, store, and process light pulses.

"The simplest example of how slow light can be used is to provide a data buffer or tunable signal delay in an optical network, but we are looking beyond that with our integrated photonic chip," Schmidt said.

The device relies on quantum interference effects in a rubidium vapor inside a hollow-core optical waveguide that is built into a silicon chip using standard manufacturing techniques. It builds on earlier work by Schmidt and his collaborators that enabled them to perform atomic spectroscopy on a chip (http://press.ucsc.edu/text.asp?pid=1356). The first author of the new paper is Bin Wu, a graduate student in electrical engineering at UCSC. The coauthors include John Hulbert, Evan Lunt, Katie Hurd, and Aaron Hawkins of Brigham Young University.

Several different techniques have been used to slow light to a crawl and even bring it to a complete halt for a few hundredths of a millisecond. Previously, however, systems based on quantum interference required low temperatures or laboratory setups too elaborate for practical use. In 2008, researchers at NTT Laboratories in Japan developed a specially structured silicon chip that could slow light pulses by a factor of 170. Called a photonic crystal waveguide, it has advantages for certain applications, but it does not produce the quantum effects of the atomic spectroscopy chip developed by Schmidt's group.

Those quantum effects produce not only slow light but other interactions between light and matter that raise the possibility of radically new optical devices for quantum computing and quantum communication systems, according to Schmidt. In addition, the system makes it easy to turn the effect on and off and tune it to the desired speed of light.

"By changing the power of a control laser, we can change the speed of light--just by turning the power control knob," he said.

The control laser modifies the optical properties of the rubidium vapor in the hollow-core waveguide. Under the combined action of two laser fields (control and signal), electrons in the rubidium atoms are transferred into a coherent superposition of two quantum states. In the strange world of quantum physics, they exist in two different states at the same time. One result is an effect known as electromagnetically induced transparency, which is key to producing slow light.

"Normally, the rubidium vapor absorbs the light from the signal laser, so nothing gets through. Then you turn on the control laser and boom, the material becomes transparent and the signal pulse not only makes it through, but it also moves significantly more slowly," Schmidt said.

This study is the first demonstration of electromagnetically induced transparency and slow light on a fully self-contained atomic spectroscopy chip.

"This has implications for looking at nonlinear optical effects beyond slow light," Schmidt said. "We can potentially use this to create all-optical switches, single-photon detectors, quantum memory devices, and other exciting possibilities."

This research was funded by the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation (NSF).

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>