Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What's the Matter? That's What U.Va. Physicists Are Seeking to Detect

08.12.2010
One of the great and fundamental questions in physics is: Why is there matter? Physicists theorize that in the instant after the Big Bang created the makings of the universe, there were nearly equal amounts of matter and anti-matter, protons and anti-protons, neutrons and anti-neutrons. They should have annihilated each other, resulting in … nothing.

Instead, for some reason, more matter was created than anti-matter, and the universe was born.

"Without this asymmetry that occurred, without this slight abundance of matter over anti-matter, there would be nothing," said Craig Dukes, a physicist in the High Energy Physics Laboratory in the University of Virginia's College of Arts & Sciences. "The universe would be a boring place. There would be no stars, no planets, no people, no books. There would be no filet mignon."

Nor physicists, for that matter. But because the universe instead is made up of atoms and molecules, elements and compounds, Dukes and his colleagues are here to try to understand how it happened.

"We just want to know why the universe is the way it is," he said.

Dukes is a member of a multi-institutional team building a $280 million, 15,000-ton detector designed to help answer the fundamental question of why matter prevailed. The detector, being built in northern Minnesota near International Falls, will complement another smaller detector recently constructed at Fermilab near Chicago.

Dukes is using a $2.5 million grant from the U.S. Department of Energy to fabricate essential components to the new detectors at the national high energy physics facility.

"We're playing a key role in building detectors that will allow us to conduct a long-running series of investigations called the NOvA Neutrino Experiment, that hopefully will get to the very heart of matter," Dukes said.

Physicists will investigate matter-antimatter asymmetries in neutrinos. Among the most abundant particles in the universe, neutrinos were present at the very beginning of the universe, and those same neutrinos are present today. These relics of the infant universe may be – at least in theory until experiments get under way in 2013 – the very source for the matter/anti-matter asymmetry of the universe and a way to explain how things happened at the beginning.

"We will be looking at a process, and then looking at the anti-process, how neutrinos change from one type to another," Dukes said.

To do this scientists need two neutrino detectors; one to measure how many neutrinos are produced in a particle accelerator at Fermilab, and another much larger detector, 503 miles away, to capture a high energy beam and detect how those neutrinos have changed in the span of an instant of time. The beam, which will be passing mostly underground, is harmless to humans and other life. If neutrinos and anti-neutrinos change differently from one type to another, this might explain the process that may have happened to produce a slight abundance of matter over antimatter at the beginning of the universe.

The large distance between the detectors is needed to allow time for a change to the neutrinos to occur, and physicists are betting they will, hence the $280 million gamble. The far detector must be much larger than the near detector because the neutrinos, as they travel the more than 500 miles at nearly the speed of light, spread out into a large defuse beam, requiring a large mitt, so to speak, with which to catch them. The first round of experiments will be conducted over a six-year period, and sorting out the data with high-speed computers will take several more years.

Construction of the NOvA experiment started in May 2009 and the first set of physics data is expected from the near detector early next year. The far detector is under construction and will be fully operational in 2013.

Dukes' U.Va. team of physicists, graduate students and undergraduate students has been working on building and deploying components since 2008. They have built and installed a power distribution system that provides power to the near detector electronics, and other systems that run and monitor the detector. Two of each system are needed, one for each of the two detectors. The systems for the near detector are already in place and operating.

"If we ultimately are able to see a difference between the way neutrinos behave, and the way anti-neutrinos behave, then it possibly could be a reason for why there's an asymmetry in the matter and antimatter in the universe," Dukes said. "It could be the reason we have a matter-dominated universe rather than nothing at all. We may be on the verge of a new understanding of physics."

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

Further reports about: Big Bang Fermilab Physicists anti-matter anti-protons neutrino detectors neutrons protons

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>