Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What's the Matter? That's What U.Va. Physicists Are Seeking to Detect

08.12.2010
One of the great and fundamental questions in physics is: Why is there matter? Physicists theorize that in the instant after the Big Bang created the makings of the universe, there were nearly equal amounts of matter and anti-matter, protons and anti-protons, neutrons and anti-neutrons. They should have annihilated each other, resulting in … nothing.

Instead, for some reason, more matter was created than anti-matter, and the universe was born.

"Without this asymmetry that occurred, without this slight abundance of matter over anti-matter, there would be nothing," said Craig Dukes, a physicist in the High Energy Physics Laboratory in the University of Virginia's College of Arts & Sciences. "The universe would be a boring place. There would be no stars, no planets, no people, no books. There would be no filet mignon."

Nor physicists, for that matter. But because the universe instead is made up of atoms and molecules, elements and compounds, Dukes and his colleagues are here to try to understand how it happened.

"We just want to know why the universe is the way it is," he said.

Dukes is a member of a multi-institutional team building a $280 million, 15,000-ton detector designed to help answer the fundamental question of why matter prevailed. The detector, being built in northern Minnesota near International Falls, will complement another smaller detector recently constructed at Fermilab near Chicago.

Dukes is using a $2.5 million grant from the U.S. Department of Energy to fabricate essential components to the new detectors at the national high energy physics facility.

"We're playing a key role in building detectors that will allow us to conduct a long-running series of investigations called the NOvA Neutrino Experiment, that hopefully will get to the very heart of matter," Dukes said.

Physicists will investigate matter-antimatter asymmetries in neutrinos. Among the most abundant particles in the universe, neutrinos were present at the very beginning of the universe, and those same neutrinos are present today. These relics of the infant universe may be – at least in theory until experiments get under way in 2013 – the very source for the matter/anti-matter asymmetry of the universe and a way to explain how things happened at the beginning.

"We will be looking at a process, and then looking at the anti-process, how neutrinos change from one type to another," Dukes said.

To do this scientists need two neutrino detectors; one to measure how many neutrinos are produced in a particle accelerator at Fermilab, and another much larger detector, 503 miles away, to capture a high energy beam and detect how those neutrinos have changed in the span of an instant of time. The beam, which will be passing mostly underground, is harmless to humans and other life. If neutrinos and anti-neutrinos change differently from one type to another, this might explain the process that may have happened to produce a slight abundance of matter over antimatter at the beginning of the universe.

The large distance between the detectors is needed to allow time for a change to the neutrinos to occur, and physicists are betting they will, hence the $280 million gamble. The far detector must be much larger than the near detector because the neutrinos, as they travel the more than 500 miles at nearly the speed of light, spread out into a large defuse beam, requiring a large mitt, so to speak, with which to catch them. The first round of experiments will be conducted over a six-year period, and sorting out the data with high-speed computers will take several more years.

Construction of the NOvA experiment started in May 2009 and the first set of physics data is expected from the near detector early next year. The far detector is under construction and will be fully operational in 2013.

Dukes' U.Va. team of physicists, graduate students and undergraduate students has been working on building and deploying components since 2008. They have built and installed a power distribution system that provides power to the near detector electronics, and other systems that run and monitor the detector. Two of each system are needed, one for each of the two detectors. The systems for the near detector are already in place and operating.

"If we ultimately are able to see a difference between the way neutrinos behave, and the way anti-neutrinos behave, then it possibly could be a reason for why there's an asymmetry in the matter and antimatter in the universe," Dukes said. "It could be the reason we have a matter-dominated universe rather than nothing at all. We may be on the verge of a new understanding of physics."

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

Further reports about: Big Bang Fermilab Physicists anti-matter anti-protons neutrino detectors neutrons protons

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>