Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What's the Matter? That's What U.Va. Physicists Are Seeking to Detect

08.12.2010
One of the great and fundamental questions in physics is: Why is there matter? Physicists theorize that in the instant after the Big Bang created the makings of the universe, there were nearly equal amounts of matter and anti-matter, protons and anti-protons, neutrons and anti-neutrons. They should have annihilated each other, resulting in … nothing.

Instead, for some reason, more matter was created than anti-matter, and the universe was born.

"Without this asymmetry that occurred, without this slight abundance of matter over anti-matter, there would be nothing," said Craig Dukes, a physicist in the High Energy Physics Laboratory in the University of Virginia's College of Arts & Sciences. "The universe would be a boring place. There would be no stars, no planets, no people, no books. There would be no filet mignon."

Nor physicists, for that matter. But because the universe instead is made up of atoms and molecules, elements and compounds, Dukes and his colleagues are here to try to understand how it happened.

"We just want to know why the universe is the way it is," he said.

Dukes is a member of a multi-institutional team building a $280 million, 15,000-ton detector designed to help answer the fundamental question of why matter prevailed. The detector, being built in northern Minnesota near International Falls, will complement another smaller detector recently constructed at Fermilab near Chicago.

Dukes is using a $2.5 million grant from the U.S. Department of Energy to fabricate essential components to the new detectors at the national high energy physics facility.

"We're playing a key role in building detectors that will allow us to conduct a long-running series of investigations called the NOvA Neutrino Experiment, that hopefully will get to the very heart of matter," Dukes said.

Physicists will investigate matter-antimatter asymmetries in neutrinos. Among the most abundant particles in the universe, neutrinos were present at the very beginning of the universe, and those same neutrinos are present today. These relics of the infant universe may be – at least in theory until experiments get under way in 2013 – the very source for the matter/anti-matter asymmetry of the universe and a way to explain how things happened at the beginning.

"We will be looking at a process, and then looking at the anti-process, how neutrinos change from one type to another," Dukes said.

To do this scientists need two neutrino detectors; one to measure how many neutrinos are produced in a particle accelerator at Fermilab, and another much larger detector, 503 miles away, to capture a high energy beam and detect how those neutrinos have changed in the span of an instant of time. The beam, which will be passing mostly underground, is harmless to humans and other life. If neutrinos and anti-neutrinos change differently from one type to another, this might explain the process that may have happened to produce a slight abundance of matter over antimatter at the beginning of the universe.

The large distance between the detectors is needed to allow time for a change to the neutrinos to occur, and physicists are betting they will, hence the $280 million gamble. The far detector must be much larger than the near detector because the neutrinos, as they travel the more than 500 miles at nearly the speed of light, spread out into a large defuse beam, requiring a large mitt, so to speak, with which to catch them. The first round of experiments will be conducted over a six-year period, and sorting out the data with high-speed computers will take several more years.

Construction of the NOvA experiment started in May 2009 and the first set of physics data is expected from the near detector early next year. The far detector is under construction and will be fully operational in 2013.

Dukes' U.Va. team of physicists, graduate students and undergraduate students has been working on building and deploying components since 2008. They have built and installed a power distribution system that provides power to the near detector electronics, and other systems that run and monitor the detector. Two of each system are needed, one for each of the two detectors. The systems for the near detector are already in place and operating.

"If we ultimately are able to see a difference between the way neutrinos behave, and the way anti-neutrinos behave, then it possibly could be a reason for why there's an asymmetry in the matter and antimatter in the universe," Dukes said. "It could be the reason we have a matter-dominated universe rather than nothing at all. We may be on the verge of a new understanding of physics."

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

Further reports about: Big Bang Fermilab Physicists anti-matter anti-protons neutrino detectors neutrons protons

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>