Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Rogue' asteroids may be the norm

30.01.2014
To get an idea of how the early solar system may have formed, scientists often look to asteroids. These relics of rock and dust represent what today's planets may have been before they differentiated into bodies of core, mantle, and crust.

In the 1980s, scientists' view of the solar system's asteroids was essentially static: Asteroids that formed near the sun remained near the sun; those that formed farther out stayed on the outskirts.

But in the last decade, astronomers have detected asteroids with compositions unexpected for their locations in space: Those that looked like they formed in warmer environments were found further out in the solar system, and vice versa. Scientists considered these objects to be anomalous "rogue" asteroids.

But now, a new map developed by researchers from MIT and the Paris Observatory charts the size, composition, and location of more than 100,000 asteroids throughout the solar system, and shows that rogue asteroids are actually more common than previously thought. Particularly in the solar system's main asteroid belt — between Mars and Jupiter — the researchers found a compositionally diverse mix of asteroids.

The new asteroid map suggests that the early solar system may have undergone dramatic changes before the planets assumed their current alignment. For instance, Jupiter may have drifted closer to the sun, dragging with it a host of asteroids that originally formed in the colder edges of the solar system, before moving back out to its current position. Jupiter's migration may have simultaneously knocked around more close-in asteroids, scattering them outward.

"It's like Jupiter bowled a strike through the asteroid belt," says Francesca DeMeo, who did much of the mapping as a postdoc in MIT's Department of Earth, Atmospheric and Planetary Sciences. "Everything that was there moves, so you have this melting pot of material coming from all over the solar system."

DeMeo says the new map will help theorists flesh out such theories of how the solar system evolved early in its history. She and Benoit Carry of the Paris Observatory have published details of the map in Nature.

From a trickle to a river

To create a comprehensive asteroid map, the researchers first analyzed data from the Sloan Digital Sky Survey, which uses a large telescope in New Mexico to take in spectral images of hundreds of thousands of galaxies. Included in the survey is data from more than 100,000 asteroids in the solar system. DeMeo grouped these asteroids by size, location, and composition. She defined this last category by asteroids' origins — whether in a warmer or colder environment — a characteristic that can be determined by whether an asteroid's surface is more reflective at redder or bluer wavelengths.

The team then had to account for any observational biases. While the survey includes more than 100,000 asteroids, these are the brightest such objects in the sky. Asteroids that are smaller and less reflective are much harder to pick out, meaning that an asteroid map based on observations may unintentionally leave out an entire population of asteroids.

To avoid any bias in their mapping, the researchers determined that the survey most likely includes every asteroid down to a diameter of five kilometers. At this size limit, they were able to produce an accurate picture of the asteroid belt. The researchers grouped the asteroids by size and composition, and mapped them into distinct regions of the solar system where the asteroids were observed.

From their map, they observed that for larger asteroids, the traditional pattern holds true: The further one gets from the sun, the colder the asteroids appear. But for smaller asteroids, this trend seems to break down. Those that look to have formed in warmer environments can be found not just close to the sun, but throughout the solar system — and asteroids that resemble colder bodies beyond Jupiter can also be found in the inner asteroid belt, closer to Mars.

As the team writes in its paper, "the trickle of asteroids discovered in unexpected locations has turned into a river. We now see that all asteroid types exist in every region of the main belt."

A shifting solar system

The compositional diversity seen in this new asteroid map may add weight to a theory of planetary migration called the Grand Tack model. This model lays out a scenario in which Jupiter, within the first few million years of the solar system's creation, migrated as close to the sun as Mars is today. During its migration, Jupiter may have moved right through the asteroid belt, scattering its contents and repopulating it with asteroids from both the inner and outer solar system before moving back out to its current position — a picture that is very different from the traditional, static view of a solar system that formed and stayed essentially in place for the past 4.5 billion years.

"That [theory] has been completely turned on its head," DeMeo says. "Today we think the absolute opposite: Everything's been moved around a lot and the solar system has been very dynamic."

DeMeo adds that the early pinballing of asteroids around the solar system may have had big impacts — literally — on Earth. For instance, colder asteroids that formed further out likely contained ice. When they were brought closer in by planetary migrations, they may have collided with Earth, leaving remnants of ice that eventually melted into water.

"The story of what the asteroid belt is telling us also relates to how Earth developed water, and how it stayed in this Goldilocks region of habitability today," DeMeo says.

Jennifer Chu | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Theory of the strong interaction verified
27.03.2015 | Forschungszentrum Juelich

nachricht Dark matter even darker than once thought
27.03.2015 | ESA/Hubble Information Centre

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>