Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thanks for the 'Quantum' Memories: Research May Lead to Faster, More Secure Computers

30.03.2010
Virginia Lorenz, who recently joined the University of Delaware faculty as an assistant professor of physics and astronomy, is working on one of the hottest areas in physics -- quantum memories. These devices store information in a flash of light and may serve as the basis of future communications networks.

Lorenz recently co-authored the Nature Photonics article, “Towards High-Speed Optical Quantum Memories,” with colleagues at the University of Oxford, where she did her postdoctoral research with Prof. Ian Walmsley. She tells the University of Delaware's UDaily news service about this fascinating field.

Q. What exactly are quantum memories?

A. Like our own human memory, a quantum memory is a device in which we can store and retrieve information. A quantum memory stores bits of information like a computer. However, unlike everyday computer memory, which uses 1's and 0's to represent information, in a quantum memory the bits can be 1 and 0 at the same time. This is what makes a quantum memory quantum. Quantum refers to the fundamental nature of particles such as atoms and photons. Although in everyday life, things like a light switch are either on or off, when you zoom in to the level of atoms, particles can be in more than one state at a time. A quantum memory is a device that can store the properties of a quantum particle without causing it to be in one state or another.

Q. What advantages would quantum memories provide to computing?

A. The information stored by a quantum memory is called a quantum bit, or qubit. Qubits can be used to perform some mathematical algorithms much faster than current computers, such as factoring the very large numbers used as security keys in secure communication networks. Hence, there is current interest in building quantum computers that use qubits rather than the 1's and 0's of today's computers. Quantum states can also be used to transmit information in a way that prohibits undetected eavesdropping. Quantum memories are important in achieving such secure communication in a somewhat similar way as cell phone repeater stations are important in transmitting signals across long distances.

Q. What did you and your colleagues at Oxford achieve?

A. My colleagues and I built a prototype quantum memory. The information was encoded in an extremely fast flash, or pulse, of laser light, only 300 trillionths of a second long, and the storage medium was a large number of atoms in the gas phase. Although with respect to the fastest laser pulses available ours was relatively slow, it was the fastest pulse to be stored and retrieved in a memory to date, potentially increasing the current data rate more than 100-fold.

Q. What is the next step in the research?

A. For the quantum memory project, which continues on at the University of Oxford, the next step is to store and retrieve a quantum particle of light, called a photon, which would demonstrate that the memory is capable of storing quantum information useful for quantum computation and communication.

In my research group here at UD, we are using quantum states of light to improve our ability to probe the states of atoms and molecules. It turns out that quantum states of light can provide information about matter that regular, or classical, light cannot. In particular, quantum states of light can enhance signals from light-matter interactions that would otherwise be hidden if using classical light. Our work could have implications for experiments that suffer due to unwanted signals and, albeit distant, provide insight into the efficient conversion of energy.

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>