Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thanks for the 'Quantum' Memories: Research May Lead to Faster, More Secure Computers

30.03.2010
Virginia Lorenz, who recently joined the University of Delaware faculty as an assistant professor of physics and astronomy, is working on one of the hottest areas in physics -- quantum memories. These devices store information in a flash of light and may serve as the basis of future communications networks.

Lorenz recently co-authored the Nature Photonics article, “Towards High-Speed Optical Quantum Memories,” with colleagues at the University of Oxford, where she did her postdoctoral research with Prof. Ian Walmsley. She tells the University of Delaware's UDaily news service about this fascinating field.

Q. What exactly are quantum memories?

A. Like our own human memory, a quantum memory is a device in which we can store and retrieve information. A quantum memory stores bits of information like a computer. However, unlike everyday computer memory, which uses 1's and 0's to represent information, in a quantum memory the bits can be 1 and 0 at the same time. This is what makes a quantum memory quantum. Quantum refers to the fundamental nature of particles such as atoms and photons. Although in everyday life, things like a light switch are either on or off, when you zoom in to the level of atoms, particles can be in more than one state at a time. A quantum memory is a device that can store the properties of a quantum particle without causing it to be in one state or another.

Q. What advantages would quantum memories provide to computing?

A. The information stored by a quantum memory is called a quantum bit, or qubit. Qubits can be used to perform some mathematical algorithms much faster than current computers, such as factoring the very large numbers used as security keys in secure communication networks. Hence, there is current interest in building quantum computers that use qubits rather than the 1's and 0's of today's computers. Quantum states can also be used to transmit information in a way that prohibits undetected eavesdropping. Quantum memories are important in achieving such secure communication in a somewhat similar way as cell phone repeater stations are important in transmitting signals across long distances.

Q. What did you and your colleagues at Oxford achieve?

A. My colleagues and I built a prototype quantum memory. The information was encoded in an extremely fast flash, or pulse, of laser light, only 300 trillionths of a second long, and the storage medium was a large number of atoms in the gas phase. Although with respect to the fastest laser pulses available ours was relatively slow, it was the fastest pulse to be stored and retrieved in a memory to date, potentially increasing the current data rate more than 100-fold.

Q. What is the next step in the research?

A. For the quantum memory project, which continues on at the University of Oxford, the next step is to store and retrieve a quantum particle of light, called a photon, which would demonstrate that the memory is capable of storing quantum information useful for quantum computation and communication.

In my research group here at UD, we are using quantum states of light to improve our ability to probe the states of atoms and molecules. It turns out that quantum states of light can provide information about matter that regular, or classical, light cannot. In particular, quantum states of light can enhance signals from light-matter interactions that would otherwise be hidden if using classical light. Our work could have implications for experiments that suffer due to unwanted signals and, albeit distant, provide insight into the efficient conversion of energy.

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>