Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thanks for the 'Quantum' Memories: Research May Lead to Faster, More Secure Computers

30.03.2010
Virginia Lorenz, who recently joined the University of Delaware faculty as an assistant professor of physics and astronomy, is working on one of the hottest areas in physics -- quantum memories. These devices store information in a flash of light and may serve as the basis of future communications networks.

Lorenz recently co-authored the Nature Photonics article, “Towards High-Speed Optical Quantum Memories,” with colleagues at the University of Oxford, where she did her postdoctoral research with Prof. Ian Walmsley. She tells the University of Delaware's UDaily news service about this fascinating field.

Q. What exactly are quantum memories?

A. Like our own human memory, a quantum memory is a device in which we can store and retrieve information. A quantum memory stores bits of information like a computer. However, unlike everyday computer memory, which uses 1's and 0's to represent information, in a quantum memory the bits can be 1 and 0 at the same time. This is what makes a quantum memory quantum. Quantum refers to the fundamental nature of particles such as atoms and photons. Although in everyday life, things like a light switch are either on or off, when you zoom in to the level of atoms, particles can be in more than one state at a time. A quantum memory is a device that can store the properties of a quantum particle without causing it to be in one state or another.

Q. What advantages would quantum memories provide to computing?

A. The information stored by a quantum memory is called a quantum bit, or qubit. Qubits can be used to perform some mathematical algorithms much faster than current computers, such as factoring the very large numbers used as security keys in secure communication networks. Hence, there is current interest in building quantum computers that use qubits rather than the 1's and 0's of today's computers. Quantum states can also be used to transmit information in a way that prohibits undetected eavesdropping. Quantum memories are important in achieving such secure communication in a somewhat similar way as cell phone repeater stations are important in transmitting signals across long distances.

Q. What did you and your colleagues at Oxford achieve?

A. My colleagues and I built a prototype quantum memory. The information was encoded in an extremely fast flash, or pulse, of laser light, only 300 trillionths of a second long, and the storage medium was a large number of atoms in the gas phase. Although with respect to the fastest laser pulses available ours was relatively slow, it was the fastest pulse to be stored and retrieved in a memory to date, potentially increasing the current data rate more than 100-fold.

Q. What is the next step in the research?

A. For the quantum memory project, which continues on at the University of Oxford, the next step is to store and retrieve a quantum particle of light, called a photon, which would demonstrate that the memory is capable of storing quantum information useful for quantum computation and communication.

In my research group here at UD, we are using quantum states of light to improve our ability to probe the states of atoms and molecules. It turns out that quantum states of light can provide information about matter that regular, or classical, light cannot. In particular, quantum states of light can enhance signals from light-matter interactions that would otherwise be hidden if using classical light. Our work could have implications for experiments that suffer due to unwanted signals and, albeit distant, provide insight into the efficient conversion of energy.

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>