Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Perfect' Liquid Hot Enough to be Quark Soup

04.03.2010
Protons, neutrons melt to produce ‘quark-gluon plasma’ at RHIC

Recent analyses from the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference “atom smasher” at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, establish that collisions of gold ions traveling at nearly the speed of light have created matter at a temperature of about 4 trillion degrees Celsius — the hottest temperature ever reached in a laboratory, about 250,000* times hotter than the center of the Sun. This temperature, based upon measurements by the PHENIX collaboration at RHIC, is higher than the temperature needed to melt protons and neutrons into a plasma of quarks and gluons. Details of the findings will be published in Physical Review Letters.

These new temperature measurements, combined with other observations analyzed over nine years of operations by RHIC’s four experimental collaborations — BRAHMS, PHENIX, PHOBOS, and STAR — indicate that RHIC’s gold-gold collisions produce a freely flowing liquid composed of quarks and gluons. Such a substance, often referred to as quark-gluon plasma, or QGP, filled the universe a few microseconds after it came into existence 13.7 billion years ago. At RHIC, this liquid appears, and the quoted temperature is reached, in less time than it takes light to travel across a single proton.

“This research offers significant insight into the fundamental structure of matter and the early universe, highlighting the merits of long-term investment in large-scale, basic research programs at our national laboratories,” said Dr. William F. Brinkman, Director of the DOE Office of Science. “I commend the careful approach RHIC scientists have used to gather detailed evidence for their claim of creating a truly remarkable new form of matter.”

According to Steven Vigdor, Brookhaven’s Associate Laboratory Director for Nuclear and Particle Physics, who oversees the RHIC research program, “These data provide the first measurement of the temperature of the quark-gluon plasma at RHIC.”

Scientists measure the temperature of hot matter by looking at the color, or energy distribution, of light emitted from it — similar to the way one can tell that an iron rod is hot by looking at its glow. Because light interacts very little with the hot liquid produced at RHIC, it bears accurate witness to the early cauldron-like conditions created within.

Said Vigdor, “The temperature inferred from these new measurements at RHIC is considerably higher than the long-established maximum possible temperature attainable without the liberation of quarks and gluons from their normal confinement inside individual protons and neutrons.

“However,” he added, “the quarks and gluons in the matter we see at RHIC behave much more cooperatively than the independent particles initially predicted for QGP.”

Hot gas vs. hot liquid

Scientists believe that a plasma of quarks and gluons existed a few microseconds after the birth of the universe, before cooling and condensing to form the protons and neutrons that make up all the matter around us — from individual atoms to stars, planets, and people. Although the matter produced at RHIC survives for much less than a billionth of a trillionth of a second, its properties can be determined using RHIC’s highly sophisticated detectors to look at the thousands of particles emitted during its brief lifetime. The measurements provide new insights into Nature’s strongest force — in essence, what holds all the protons and neutrons of the universe together.

Predictions made prior to RHIC’s initial operations in 2000 expected that the quark-gluon plasma would exist as a gas. But surprising and definitive data from RHIC’s first three years of operation, presented by RHIC scientists in April 2005, showed that the matter produced at RHIC behaves as a liquid, whose constituent particles interact very strongly among themselves. This liquid matter has been described as nearly “perfect” in the sense that it flows with almost no frictional resistance, or viscosity. Such a “perfect” liquid doesn’t fit with the picture of “free” quarks and gluons physicists had previously used to describe QGP.

In the papers published in 2005, RHIC physicists laid out a plan of crucial measurements to clarify the nature and constituents of the “perfect” liquid. Measuring the temperature early in the collisions was one of those goals. Models of the evolution of the matter produced in RHIC collisions had suggested that the initial temperature might be high enough to melt protons, but a more direct measurement of the temperature required detecting photons — particles of light — emitted near the beginning of the collision, which travel outward undisturbed by their surroundings.

“This was an extraordinarily challenging measurement,” explained Barbara Jacak, a professor of physics at Stony Brook University and spokesperson for the PHENIX collaboration. “There are many ways that photons can be produced in these violent collisions. We were able to ‘eliminate’ the contribution from these other sources by exploiting RHIC’s flexibility to measure them directly and to make the same measurement in collisions of protons, rather than of gold nuclei. Thus we could pin down excess production in the gold-gold collisions, and determine the temperature of the matter that radiated the excess photons. By matching theoretical models of the expanding plasma to the data, we can determine that the initial temperature of the ‘perfect’ liquid has reached about four trillion degrees Celsius.”

Moving forward

The discoveries at RHIC have led to compelling new questions in the field of quantum chromodynamics (QCD), the theory that describes the interactions of the smallest known components of the atomic nucleus. To probe these and other questions and conduct detailed studies of the plasma, Brookhaven physicists are planning to upgrade RHIC over the next few years to increase its collision rate and detector capabilities.

“These technical improvements will facilitate studies of rare signals providing measurements of even better precision on temperature, viscosity, and other basic properties of the nearly perfect liquid quark-gluon plasma created at RHIC,” Vigdor said.

Research at RHIC is funded primarily by the U.S. Department of Energy's Office of Science and by various national and international collaborating institutions.

*corrected calculation

RHIC and the LHC

The research program at RHIC will be complemented by studies soon to get underway at the Large Hadron Collider (LHC), a 17-mile-circumference particle accelerator beginning operations in Europe. The LHC will devote a month each year to colliding heavy nuclei at energies much higher than RHIC’s — extending the exploration of matter one step farther back in time toward the birth of the universe. Calculations of quantum chromodynamics now predict that as temperatures increase significantly, quark-gluon matter should slowly evolve from RHIC’s perfect liquid to an ideal gas. The LHC will provide the first opportunity to observe this evolution as collision temperatures increase by a factor of 2 to 3 in its own heavy-ion experiments, set to begin in late 2010.

At the same time, RHIC’s upgrades and flexible operations will allow scientists to quantify particle interactions inside the perfect liquid and explore the phase diagram of nuclear matter. “RHIC and the LHC will work together in complementary ways to broaden our understanding of the basic constituents of our universe and the forces that shape them,” Vigdor said.

Saeko Okada | Research asia research news
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=1074
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>