Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Naked-eye' gamma-ray burst was aimed squarely at Earth

15.09.2008
Data from satellites and observatories around the globe show a jet from a powerful stellar explosion witnessed March 19 was aimed almost directly at Earth.

NASA's Swift satellite detected the explosion - formally named GRB 080319B - at 2:13 a.m. EDT that morning and pinpointed its position in the constellation Bootes. The event, called a gamma-ray burst, became bright enough for human eyes to see. Observations of the event are giving astronomers the most detailed portrait of a burst ever recorded.

"Swift was designed to find unusual bursts," said Swift principal investigator Neil Gehrels at NASA's Goddard Space Flight Center in Greenbelt, Md. "We really hit the jackpot with this one."

In a paper to appear in Thursday's issue of Nature, Judith Racusin of Penn State University and a team of 92 coauthors report on observations across the spectrum that began 30 minutes before the explosion and followed its afterglow for months. The team concludes the burst's extraordinary brightness arose from a jet that shot material directly toward Earth at 99.99995 percent the speed of light.

At the same moment Swift saw the burst, the Russian KONUS instrument on NASA's Wind satellite also sensed the gamma rays and provided a wide view of their spectral structure. A robotic wide-field optical camera called "Pi of the Sky" in Chile simultaneously captured the burst's first visible light. The system is operated by institutions from Poland.

Within the next 15 seconds, the burst brightened enough to be visible in a dark sky to human eyes. It briefly crested at a magnitude of 5.3 on the astronomical brightness scale. Incredibly, the dying star was 7.5 billion light-years away.

Telescopes around the world already were studying the afterglow of another burst when GRB 080319B exploded just 10 degrees away. TORTORA, a robotic wide-field optical camera operated in Chile with Russian-Italian collaboration, also caught the early light. TORTORA's rapid imaging provided the most detailed look yet at visible light associated with a burst's initial gamma-ray blast.

Immediately after the blast, Swift's UltraViolet and Optical Telescope and X-Ray Telescope indicated they were effectively blinded. Racusin initially thought something was wrong. Within minutes, however, as reports from other observers arrived, it was clear this was a special event.

Gamma-ray bursts are the universe's most luminous explosions. Most occur when massive stars run out of nuclear fuel. As a star's core collapses, it creates a black hole or neutron star that, through processes not fully understood, drive powerful gas jets outward. These jets punch through the collapsing star. As the jets shoot into space, they strike gas previously shed by the star and heat it. That generates bright afterglows.

The team believes the jet directed toward Earth contained an ultra-fast component just 0.4 of a degree across. This core resided within a slightly less energetic jet about 20 times wider.

"It's this wide jet that Swift usually sees from other bursts," Racusin explained. "Maybe every gamma-ray burst contains a narrow jet, too, but astronomers miss them because we don't see them head-on."

Such an alignment occurs by chance only about once a decade, so a GRB 080319B is a rare catch.

J.D. Harrington | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/swift/bursts/naked_eye_telecon.html

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>