Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Long-awaited explanation' for mysterious effects in high-temperature superconductors

10.06.2013
2 orders for electrons

A German-French research team has constructed a new model that explains how the so-called pseudogap state forms in high-temperature superconductors. The calculations predict two coexisting electron orders.


At each copper atom (grey balls) there is a quadrupole moment. All together, these form a kind of chessboard pattern, whereby the individual squares of the chessboard differ in the orientation of the positively and negatively charged areas (green: positive areas left and right; grey: positive areas top and bottom). At the boundaries between green and grey surfaces, the signs change. Copper atoms close to the boundary have a smaller quadrupole moment than copper atoms in the middle of the areas.

© Konstantin Efetov und Hendrik Meier (Institut für Theoretische Physik III)

Below a certain temperature, superconductors lose their electrical resistance and can conduct electricity without loss. "It is not to be excluded that the new pseudogap theory also provides the long-awaited explanation for why, in contrast to conventional metallic superconductors, certain ceramic copper oxide bonds lose their electrical resistance at such unusually high temperatures", say Prof. Dr. Konstantin Efetov and Dr. Hendrik Meier of the Chair of Theoretical Solid State Physics at the Ruhr-Universität Bochum. They obtained the findings in close cooperation with Dr. Catherine Pépin from the Institute for Theoretical Physics in Saclay near Paris. The team reports in the journal Nature Physics.

Transition temperature much higher in ceramic than in metallic superconductors

Superconductivity only occurs at very low temperatures below the so-called transition temperature. In metallic superconductors, this is close to the absolute zero point of 0 Kelvin, which corresponds to about -273 degrees Celsius. However, crystalline ceramic materials can be superconductive at temperatures up to 138 Kelvin. For 25 years, researchers puzzled over the physical bases of this high-temperature superconductivity.

Pseudogap: energy gap above the transition temperature

In the superconducting state, electrons travel in so-called Cooper pairs through the crystal lattice of a material. In order to break up a Cooper pair so that two free electrons are created, a certain amount of energy is needed. This difference in the energy of the Cooper electrons and the so-called free electrons is called an energy gap. In cuprate superconductors, compounds based on copper oxide bonds, a similar energy gap also occurs under certain circumstances above the transition temperature – the pseudogap. Characteristically the pseudogap is only perceived by electrons with certain velocity directions. The model constructed by the German-French team now allows new insights into the physical inside of the pseudogap state.

Two competing electron orders in the pseudogap state

According to the model, the pseudogap state simultaneously contains two electron orders: d-wave superconductivity, in which the electrons of a Cooper pair revolve around each other in a cloverleaf shape, and a quadrupole density wave. The latter is a special electrostatic structure in which every copper atom in the two-dimensional crystal lattice has a quadrupole moment, i.e. two opposite regions of negative charge, and two opposite regions of positive charge. d-wave superconductivity and quadrupole density wave compete with each other in the pseudogap state. Due to thermal fluctuations, neither of the two systems can assert itself. However, if the system is cooled down, the thermal fluctuations become weaker and one of the two systems prevails: superconductivity. The critical temperature at which this occurs can, in the model, be considerably higher than the transition temperature of conventional metallic superconductors. The model could thus explain why the transition temperature in the ceramic superconductors is so much higher.

Cuprates

High-temperature copper oxide superconductors are also called cuprates. In addition to copper and oxygen, they can, for example, contain the elements yttrium and barium (YBa2Cu3O7). To make the material superconducting, researchers introduce "positive holes", i.e. electron holes into the crystal lattice. Through these, the electrons can "flow" in Cooper pairs. This is known as hole doping. The pseudogap state only sets in when the hole doping of the cuprate is neither too low nor too high.

Bibliographic record

K.B. Efetov, H. Meier, C. Pépin (2013): Pseudogap state near a quantum critical point, Nature Physics, DOI: 10.1038/NPHYS2641

Figure online

A figure depicting the quadrupole order in the pseudogap state can be downloaded from the following URL: http://aktuell.ruhr-uni-bochum.de/pm2013/pm00170.html.en

Further information

Prof. Dr. Konstantin Efetov
Chair of Theoretical Solid State Physics
Institute of Physics III at the Ruhr-Universität
44780 Bochum, Germany
Tel. +49/234/32-24844
E-mail: efetov@tp3.rub.de
Dr. Hendrik Meier
Chair of Theoretical Solid State Physics
Institute of Physics III at the Ruhr-Universität
44780 Bochum, Germany
Tel. +49/234/32-23744
E-mail: hmeier@tp3.rub.de
Editor: Dr. Julia Weiler

Konstantin Efetov | EurekAlert!
Further information:
http://www.ruhr-uni-bochum.de

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>