Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Dark plasmons' transmit energy

10.02.2012
Rice University researchers show how far nanoparticle chains can carry a signal

Microscopic channels of gold nanoparticles have the ability to transmit electromagnetic energy that starts as light and propagates via "dark plasmons," according to researchers at Rice University.

A new paper in the American Chemical Society journal Nano Letters shows how even disordered collections of nanoparticles in arrays as thin as 150 nanometers can be turned into waveguides and transmit signals an order of magnitude better than previous experiments were able to achieve. Efficient energy transfer on the micrometer scale may greatly improve optoelectronic devices.

The Rice lab of Stephan Link, an assistant professor of chemistry and electrical and computer engineering, has developed a way to "print" fine lines of gold nanoparticles on glass. These lines of nanoparticles can transmit a signal from one nanoparticle to the next over many microns, much farther than previous attempts and roughly equivalent to results seen using gold nanowires.

Complex waveguide geometries are far easier to manufacture with nanoparticle chains, Link said. He and his team used an electron beam to cut tiny channels into a polymer on a glass substrate to give the nanoparticle lines their shape. The gold nanoparticles were deposited into the channels via capillary forces. When the rest of the polymer and stray nanoparticles were washed away, the lines remained, with the particles only a few nanometers apart.

Plasmons are waves of electrons that move across the surface of a metal like water in a pond when disturbed. The disturbance can be caused by an outside electromagnetic source, such as light. Adjacent nanoparticles couple with each other where their electromagnetic fields interact and allow a signal to pass from one to the next.

Link said dark plasmons may be defined as those that have no net dipole moment, which makes them unable to couple to light. "But these modes are not totally dark, especially in the presence of disorder," he said. "Even for the subradiant modes, there is a small dipole oscillation.

"Our argument is that if you can couple to these subradiant modes, the scattering loss is smaller and plasmon propagation is sustained over longer distances," Link said. "Therefore, we enhance energy transport over much longer distances than what has been done before with metal-particle chains."

To see how far, Link and his team coated the 15-micron-long lines with a fluorescent dye and used a photobleaching method developed in his lab to measure how far the plasmons, excited by a laser at one end, propagate. "The damping of the plasmon propagation is exponential," he said. "At four microns, you have a third of the initial intensity value.

"While this propagation distance is short compared to traditional optical waveguides, in miniaturized circuits one only needs to cover small length scales. It might be possible to eventually apply an amplifier to the system that would lengthen the propagation distance," Link said. "In terms of what people thought was possible with nanoparticle chains, what we've done is already a significant improvement."

Link said silver nanowires have been shown to carry a plasmon wave better than gold, as far as 15 microns, about a sixth the width of a human hair. "We know that if we try silver nanoparticles, we may propagate a lot longer and hopefully do that in more complex structures," he said. "We may be able to use these nanoparticle waveguides to link to other components such as nanowires in configurations that would not be possible otherwise."

Graduate student David Solis Jr. is the lead author of the paper. Co-authors are graduate students Britain Willingham, Liane Slaughter, Jana Olson and Pattanawit Swanglap, junior Scott Nauert and postdoctoral research associates Aniruddha Paul and Wei-Shun Chang, all of Rice.

The research was supported by the Robert A. Welch Foundation, the Office of Naval Research, the National Science Foundation, the American Chemical Society Petroleum Research Fund and a 3M Nontenured Faculty Grant.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nl2039327

Images for download:

http://www.media.rice.edu/images/media/NewsRels/0209_PLASMON_3.PNG
A scanning electron microscope image, left, shows a 15-micron line of 50-nanometer spherical gold nanoparticles. At right is a fluorescence image of the same chain, coated with a thin film of Cardiogreen dye using 785 nm laser excitation. (Credit Link Lab/Rice University)

http://www.media.rice.edu/images/media/NewsRels/0208_plasmon.jpg

Members of the lab of Rice Professor Stephan Link – from left, research associate Wei-Shun Chang and graduate students David Solis Jr. and Britain Willingham – created thin strips of gold nanoparticles to study their ability to carry electromagnetic signals via dark plasmons. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://www.rice.edu/nationalmedia/Rice.pdf

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>