Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Chaogates' Hold Promise for the Semiconductor Industry

In a move that holds great significance for the semiconductor industry, a team of researchers has created an alternative to conventional logic gates, demonstrated them in silicon, and dubbed them "chaogates." The researchers present their findings in CHAOS, a journal published by the American Institute of Physics.

Simply put, they used chaotic patterns to encode and manipulate inputs to produce a desired output. They selected desired patterns from the infinite variety offered by a chaotic system. A subset of these patterns was then used to map the system inputs (initial conditions) to their desired outputs.

It turns out that this process provides a method to exploit the richness inherent in nonlinear dynamics to design computing devices with the capacity to reconfigure into a range of logic gates. The resulting morphing gates are chaogates.

"Chaogates are the building block of new, chaos-based computer systems that exploit the enormous pattern formation properties of chaotic systems for computation," says William Ditto, an inventor of chaos-based computing and director of the School of Biological Health Systems Engineering at Arizona State University. "Imagine a computer that can change its own internal behavior to create a billion custom chips a second based on what the user is doing that second -- one that can reconfigure itself to be the fastest computer for that moment, for your purpose."

This program is already underway at ChaoLogix, a semiconductor company founded by Ditto and colleagues, headquartered in Gainsville, Florida, into commercial prototypes that could potentially go into every type of consumer electronic device. It has some added advantages for gaming, Ditto explains, as well as for secure computer chips (it is possibly much more immune to hacking of information at the hardware level than conventional computer chips) and custom, morphable gaming chips.

And just as important, integrated circuits using chaogates can be manufactured using the same fabrication, assembly and test facilities as those already in use today. Significantly, these integrated circuits can incorporate standard logic, memory and chaogates on the same device.

The article, "Chaogates: morphing logic gates designed to exploit dynamical patterns" by William L. Ditto, A. Miliotis, K. Murali, Sudeshna Sinha, and Mark L. Spano appears in the journal CHAOS. See:

Journalists may request a free PDF of this article by contacting

Chaos is an interdisciplinary journal of non-linear science. The journal is published quarterly by the American Institute of Physics and is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. Special focus issues are published periodically each year and cover topics as diverse as the complex behavior of the human heart to chaotic fluid flow problems. See:
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:

Further reports about: AIP Chaogates Semiconductor computer chip integrated circuits logic gates

More articles from Physics and Astronomy:

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>