Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Chaogates' Hold Promise for the Semiconductor Industry

17.11.2010
In a move that holds great significance for the semiconductor industry, a team of researchers has created an alternative to conventional logic gates, demonstrated them in silicon, and dubbed them "chaogates." The researchers present their findings in CHAOS, a journal published by the American Institute of Physics.

Simply put, they used chaotic patterns to encode and manipulate inputs to produce a desired output. They selected desired patterns from the infinite variety offered by a chaotic system. A subset of these patterns was then used to map the system inputs (initial conditions) to their desired outputs.

It turns out that this process provides a method to exploit the richness inherent in nonlinear dynamics to design computing devices with the capacity to reconfigure into a range of logic gates. The resulting morphing gates are chaogates.

"Chaogates are the building block of new, chaos-based computer systems that exploit the enormous pattern formation properties of chaotic systems for computation," says William Ditto, an inventor of chaos-based computing and director of the School of Biological Health Systems Engineering at Arizona State University. "Imagine a computer that can change its own internal behavior to create a billion custom chips a second based on what the user is doing that second -- one that can reconfigure itself to be the fastest computer for that moment, for your purpose."

This program is already underway at ChaoLogix, a semiconductor company founded by Ditto and colleagues, headquartered in Gainsville, Florida, into commercial prototypes that could potentially go into every type of consumer electronic device. It has some added advantages for gaming, Ditto explains, as well as for secure computer chips (it is possibly much more immune to hacking of information at the hardware level than conventional computer chips) and custom, morphable gaming chips.

And just as important, integrated circuits using chaogates can be manufactured using the same fabrication, assembly and test facilities as those already in use today. Significantly, these integrated circuits can incorporate standard logic, memory and chaogates on the same device.

The article, "Chaogates: morphing logic gates designed to exploit dynamical patterns" by William L. Ditto, A. Miliotis, K. Murali, Sudeshna Sinha, and Mark L. Spano appears in the journal CHAOS. See: http://link.aip.org/link/chaoeh/v20/i3/p037107/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT CHAOS
Chaos is an interdisciplinary journal of non-linear science. The journal is published quarterly by the American Institute of Physics and is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. Special focus issues are published periodically each year and cover topics as diverse as the complex behavior of the human heart to chaotic fluid flow problems. See: http://chaos.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

Further reports about: AIP Chaogates Semiconductor computer chip integrated circuits logic gates

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>