Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Chaogates' Hold Promise for the Semiconductor Industry

17.11.2010
In a move that holds great significance for the semiconductor industry, a team of researchers has created an alternative to conventional logic gates, demonstrated them in silicon, and dubbed them "chaogates." The researchers present their findings in CHAOS, a journal published by the American Institute of Physics.

Simply put, they used chaotic patterns to encode and manipulate inputs to produce a desired output. They selected desired patterns from the infinite variety offered by a chaotic system. A subset of these patterns was then used to map the system inputs (initial conditions) to their desired outputs.

It turns out that this process provides a method to exploit the richness inherent in nonlinear dynamics to design computing devices with the capacity to reconfigure into a range of logic gates. The resulting morphing gates are chaogates.

"Chaogates are the building block of new, chaos-based computer systems that exploit the enormous pattern formation properties of chaotic systems for computation," says William Ditto, an inventor of chaos-based computing and director of the School of Biological Health Systems Engineering at Arizona State University. "Imagine a computer that can change its own internal behavior to create a billion custom chips a second based on what the user is doing that second -- one that can reconfigure itself to be the fastest computer for that moment, for your purpose."

This program is already underway at ChaoLogix, a semiconductor company founded by Ditto and colleagues, headquartered in Gainsville, Florida, into commercial prototypes that could potentially go into every type of consumer electronic device. It has some added advantages for gaming, Ditto explains, as well as for secure computer chips (it is possibly much more immune to hacking of information at the hardware level than conventional computer chips) and custom, morphable gaming chips.

And just as important, integrated circuits using chaogates can be manufactured using the same fabrication, assembly and test facilities as those already in use today. Significantly, these integrated circuits can incorporate standard logic, memory and chaogates on the same device.

The article, "Chaogates: morphing logic gates designed to exploit dynamical patterns" by William L. Ditto, A. Miliotis, K. Murali, Sudeshna Sinha, and Mark L. Spano appears in the journal CHAOS. See: http://link.aip.org/link/chaoeh/v20/i3/p037107/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT CHAOS
Chaos is an interdisciplinary journal of non-linear science. The journal is published quarterly by the American Institute of Physics and is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. Special focus issues are published periodically each year and cover topics as diverse as the complex behavior of the human heart to chaotic fluid flow problems. See: http://chaos.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

Further reports about: AIP Chaogates Semiconductor computer chip integrated circuits logic gates

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>