Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yerkes Researchers Use Eye Tracking to Detect Mild Dementia In Humans

17.04.2009
Researchers at the Yerkes National Primate Research Center, Emory University, developed a test in nonhuman primates that is now using infrared eye tracking to detect mild cognitive impairment (MCI) in humans.

The researchers hope the advanced technology will be helpful in predicting the onset of Alzheimer's disease. The test, which is featured in the current online issue of The American Journal of Alzheimer's Disease and Other Dementias, is helping researchers further understand the role of the brain structures critical to human memory.

Individuals who have been diagnosed with MCI show memory loss but relatively preserved abilities in other cognitive areas. However, many individuals with MCI appear to be at a higher risk for developing other forms of dementia, including Alzheimer's disease. Accordingly, individuals with MCI play an important role in the development of research strategies that could lead to early diagnosis and possible prevention of such dementias.

To study the brain changes related to memory loss, Yerkes director and lead researcher Stuart Zola, PhD, developed an infrared eye-tracking test that involves showing individuals one image and then another after a several-second delay. The researchers then repeat the test several minutes later. In doing so, they found patients with MCI spent less time looking at the new picture than control subjects.

"Someone without any impairment spends most of the time focusing on the new image because the person quickly recognizes the previously shown image," says Zola. In contrast, individuals with MCI show less interest in the new image because, as time passes, they may not remember seeing the original image. This is similar to individuals with Alzheimer's disease, who will look at both images equally because they cannot remember seeing the first image," Zola continues.

The results of the study indicate the possibility of detecting dementias much earlier than ever before. By doing so, intervention can begin sooner, which offers hope for more effective treatment and, thus, encouraging outcomes. The researchers plan to follow up the study by tracking and observing study participants to determine whether they develop any forms of dementia.

To listen to Zola's own words about his research involving diagnosing cognitive impairment, access Emory's new Sound Science podcast at http://whsc.emory.edu/soundscience/.

For nearly eight decades, the Yerkes National Primate Research Center, Emory University, has been dedicated to conducting essential basic science and translational research to advance scientific understanding and to improve the health and well-being of humans and nonhuman primates. Today, the center, as one of only eight National Institutes of Health–funded national primate research centers, provides leadership, training and resources to foster scientific creativity, collaboration and discoveries. Yerkes-based research is grounded in scientific integrity, expert knowledge, respect for colleagues, an open exchange of ideas and compassionate, quality animal care.

Within the fields of microbiology and immunology, neuroscience, psychobiology and sensory-motor systems, the center's research programs are seeking ways to: develop vaccines for infectious and noninfectious diseases, such as AIDS and Alzheimer's disease; treat cocaine addiction; interpret brain activity through imaging; increase understanding of progressive illnesses such as Parkinson's and Alzheimer's; unlock the secrets of memory; determine behavioral effects of hormone replacement therapy; address vision disorders; and advance knowledge about the evolutionary links between biology and behavior.

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Emory Winship Cancer Institute; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, Emory University Orthopaedics & Spine Hospital, the jointly owned Emory-Adventist Hospital, and EHCA, a limited liability company created with Hospital Corporation of America. EHCA includes two joint venture hospitals, Emory Eastside Medical Center and Emory Johns Creek Hospital. The Woodruff Health Sciences Center has a $2.3 billion budget, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,300 students and trainees, and a $5.5 billion economic impact on metro Atlanta.

Lisa Newbern | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>