Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Y-90 radioembolization offers promise for late-stage liver cancer

15.12.2010
The latest weapon against inoperable liver cancer is so tiny that it takes millions of them per treatment, but according to interventional radiologists at the Indiana University School of Medicine, those microscopic spheres really pack a therapeutic punch.

The glass spheres contain a radioactive element, yttrium-90, more commonly known as Y-90, which emits radiation for a very limited distance so that healthy tissue around the tumor remains unaffected. (2.5mm or less than 1/16th inch in soft tissue).

Y-90 microsphere radioembolization is an FDA-approved procedure first used in the United States in 2002. The outpatient procedure has gained favor with interventional radiologists for treating a type of cancer that is becoming more prevalent due to an increase in the cases of hepatitis and obesity, which along with alcoholism are the three primary causes of liver cancer.

Daniel E. Wertman Jr., M.D., co-director of vascular and interventional radiology and assistant professor of clinical radiology at the Indiana University School of Medicine, said more than 300 patients have been treated with Y-90 radioembolization since the program was initiated at Indiana University Hospital and the Indiana University Melvin and Bren Simon Cancer Center more than 3 years ago.

"I'm really excited about the treatment," said Dr. Wertman. "I think it's probably the best thing that has happened in our specialty."

His colleague, Matthew S. Johnson, M.D., professor of radiology and surgery at IU, reports very positive results with critically ill patients undergoing the treatment. Forty percent of his patients treated with radioembolization had tumors shrink or remain stable at three months. This is exceptional news since patients with advanced liver cancer have few options, he explained.

"I am not aiming for a cure, I'm aiming to extend their lives and make them feel better," said Dr. Johnson.

Physicians agree that liver cancer is a very complex disease. "With the Y-90 radioembolization, the disease can be address with a minimally invasive treatment and through a little band-aid sized incision we can solve very complicated problems," said Dr. Wertman.

A catheter is inserted through a tiny incision in the groin and threaded through the arteries until it reaches the hepatic artery, one of two blood vessels feeding the liver.

The physiology of the liver makes it an ideal organ for this type of treatment. The hepatic artery is the one that most commonly supplies blood to the cancerous tumors.

When the catheter is in the proper place, millions of the microscopic beads containing Y-90 are released. The microspheres lodge in the smaller vessels that directly feed the tumor, stopping blood flow and emitting radiation to kill the tumor cells.

Patients need not be isolated after treatment with Y-90 and usually are released about three hours after the treatment.

What Y-90 offers, Dr. Johnson said, is optimism. "Hope is a magical thing."

Mary L. Hardin | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>