Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Y-90 radioembolization offers promise for late-stage liver cancer

15.12.2010
The latest weapon against inoperable liver cancer is so tiny that it takes millions of them per treatment, but according to interventional radiologists at the Indiana University School of Medicine, those microscopic spheres really pack a therapeutic punch.

The glass spheres contain a radioactive element, yttrium-90, more commonly known as Y-90, which emits radiation for a very limited distance so that healthy tissue around the tumor remains unaffected. (2.5mm or less than 1/16th inch in soft tissue).

Y-90 microsphere radioembolization is an FDA-approved procedure first used in the United States in 2002. The outpatient procedure has gained favor with interventional radiologists for treating a type of cancer that is becoming more prevalent due to an increase in the cases of hepatitis and obesity, which along with alcoholism are the three primary causes of liver cancer.

Daniel E. Wertman Jr., M.D., co-director of vascular and interventional radiology and assistant professor of clinical radiology at the Indiana University School of Medicine, said more than 300 patients have been treated with Y-90 radioembolization since the program was initiated at Indiana University Hospital and the Indiana University Melvin and Bren Simon Cancer Center more than 3 years ago.

"I'm really excited about the treatment," said Dr. Wertman. "I think it's probably the best thing that has happened in our specialty."

His colleague, Matthew S. Johnson, M.D., professor of radiology and surgery at IU, reports very positive results with critically ill patients undergoing the treatment. Forty percent of his patients treated with radioembolization had tumors shrink or remain stable at three months. This is exceptional news since patients with advanced liver cancer have few options, he explained.

"I am not aiming for a cure, I'm aiming to extend their lives and make them feel better," said Dr. Johnson.

Physicians agree that liver cancer is a very complex disease. "With the Y-90 radioembolization, the disease can be address with a minimally invasive treatment and through a little band-aid sized incision we can solve very complicated problems," said Dr. Wertman.

A catheter is inserted through a tiny incision in the groin and threaded through the arteries until it reaches the hepatic artery, one of two blood vessels feeding the liver.

The physiology of the liver makes it an ideal organ for this type of treatment. The hepatic artery is the one that most commonly supplies blood to the cancerous tumors.

When the catheter is in the proper place, millions of the microscopic beads containing Y-90 are released. The microspheres lodge in the smaller vessels that directly feed the tumor, stopping blood flow and emitting radiation to kill the tumor cells.

Patients need not be isolated after treatment with Y-90 and usually are released about three hours after the treatment.

What Y-90 offers, Dr. Johnson said, is optimism. "Hope is a magical thing."

Mary L. Hardin | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>