Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Xenotransplantation as a therapy for type 1 diabetes

24.04.2012
Pig beta cells show great promise in an animal model

Type 1 diabetes is caused by autoimmune destruction of the insulin-producing beta cells. Over 250,000 patients suffer from type 1 diabetes in Germany who are treated with daily insulin injections to maintain glucose metabolism.

Replacement of the destroyed beta cells by transplantation of either a complete pancreas organ or isolated human beta cells is the only effective way to cure the disease.

However, due to the shortage of organ donors this method can be offered to only few patients. As an alternative approach researchers are exploring xenotransplantation, i.e. transplantation of the organ from another species.

The most obvious barrier in xenotransplantation is the strong immune rejection against the transplant. A research team led by LMU’s Professor Eckhard Wolf and Professor Jochen Seissler has now generated a genetically modified strain of pigs whose beta-cells restores glucose homeostasis and inhibit human-anti-pig immune reaction. So far, the efficacy of this approach has been demonstrated only in an experimental mouse model.

“Whether the strategy will work in humans remains to be demonstrated,” says Professor Wolf. “Nevertheless, we consider the approach as very promising and plan to test it further in other settings.”

Type 1 diabetes is caused by an autoimmune reaction which ultimately leads to the destruction of the insulin-producing cells in the pancreas, and usually becomes manifest during adolescence. Thereafter, insulin must be administered by regular insulin injections. Since insulin therapy cannot reproduce the complex pattern of physiologically controlled insulin secretion, patients are at risk of hypoglycemia and many patients develop severe vascular complications such as myocardial infarction or stroke.

Transplantation of a healthy pancreas or pancreatic beta cells that synthesize insulin may represent the best treatment option. Unfortunately, the availability of donor organs falls far short of requirements. Over the course of the last several years, fewer than 200 pancreas transplantations have been carried out. “Pigs represent a possible alternative source, because glucose metabolism in this species is very similar to that in human beings,” Professor Seissler points out.
Pig insulin differs from its counterpart in humans at only a single amino acid, and has been used successfully in the treatment of diabetic patients for decades. However, pig cells inevitably provoke an immune reaction leading to the destruction of the transplanted tissue. One way of avoiding this difficulty is to encapsulate the foreign tissue in a biologically inert material that is permeable to insulin but not to cells of the immune system. However, the drawback of this approach is the restricted supply of oxygen and essential nutrients to the transplanted cells, thereby reducing its lifespan.

Wolf and his team chose a different route. For the first time they generated genetically modified pigs that express the protein LEA29Y specifically in beta cells. LEA29Y effectively inhibits the activation of a class of immune cells that are required to initiate a rejection reaction. The researchers then transplanted these cells into a diabetic mouse strain that has a humanized immune system. Seissler’s group showed that these mice were able to restore glucose metabolism and were protected form human-anti-pig rejection. As Wolf is quick to point out, “It is not yet clear whether this will also work in humans. However, we will now attempt to validate the effects of this very promising approach using beta-cells expressing immune modulators in other transplantation models.” suwe

Publication:
„Xenografted Islet Cell Clusters From INSLEA29Y Transgenic Pigs Rescue Diabetes and Prevent Immune Rejection in Humanized Mice”
Nikolai Klymiuk, Lelia van Buerck, Andrea Bahr, Monika Offers, Barbara Kessler, Annegret Wuensch, Mayuko Kurome, Michael Thormann, Katharina Lochner, Hiroshi Nagashima, Nadja Herbach, Rudiger Wanke, Jochen Seissler, and Eckhard Wolf
Diabetes online, 20. April 2012
http://diabetes.diabetesjournals.org/cgi/content/abstract/db11-1325v1?papetoc

Contact:
Prof. Dr. Eckhard Wolf
Chair of Molecular Animal Genetics and Biotechnology
Genzentrum, LMU Munich
Email: ewolf@lmb.uni-muenchen.de

Prof. Dr. Jochen Seissler
Diabetes Center
Medizinische Klinik und Poliklinik IV – Campus Innenstadt
Email: Jochen.Seissler@med.uni-muenchen.de

Dr. Kathrin Bilgeri | EurekAlert!
Further information:
http://www.lmu.de

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>