Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays offer first detailed look at hotspots for calcium-related disease

05.11.2010
Calcium regulates many critical processes within the body, including muscle contraction, the heartbeat, and the release of hormones. But too much calcium can be a bad thing. In excess, it can lead to a host of diseases, such as severe muscle weakness, a fatal reaction to anesthesia or sudden cardiac death.

Now, using intense X-rays from the Stanford Synchrotron Radiation Lightsource (SSRL) at the Department of Energy's SLAC National Accelerator Laboratory, researchers have determined the detailed structure of a key part of the ryanodine receptor, a protein associated with calcium-related disease.

Their results, which combine data from SSRL and the Canadian Light Source, pinpoint the locations of more than 50 mutations that cluster in disease "hotspots” along the receptor.

"Until now, no one could tell where these disease mutations were located or what they were doing,” said principal investigator Filip Van Petegem of the University of British Columbia in Vancouver.

The ryanodine receptor controls the release of calcium ions from a storehouse within skeletal-muscle and heart-muscle cells as needed to perform critical functions. Previous studies at lower resolution indicated that mutations cluster in three regions along the receptor, but without more detailed information it remained unclear exactly how they contributed to disease.

In a study published this week in Nature, Van Petegem and his group describe the structure of one of these hotspots in extremely fine detail and predict how the mutations might cause the receptor to malfunction and release calcium too soon.

The receptor is made up of more than 20,000 molecules called amino acids. Van Petegem's group studied a string of about 560 amino acids, where they found 57 mutations. In 56 cases, the mutations involved a change in a single amino acid, while the last one involved a deletion of 35 amino acids from the string.

"These mutations most likely cause the same disease effects, but a severe mutation leads to stronger symptoms, and doesn't require as big of a stimulus to induce disease,” Van Petegem said.

In the heart, the receptor is stimulated to open about once a second when the body is at rest, sending regular pulses of calcium into the rest of the cell. In skeletal muscles, the timing of the pulses is determined by how often the muscles contract. Each time the receptor opens, certain amino acids rearrange themselves to facilitate the calcium release. Mutations can disrupt this process by causing the receptor to open either earlier or more easily than it should.

This premature release of calcium produces extra electrical signals within the cells. In skeletal muscle, this can lead to fatal rises in body temperature under certain anesthetics, or the failure of major muscles. In cardiac muscle it can trigger an arrhythmia, resulting in sudden cardiac death. While it is difficult to determine the exact number of people with these mutations, it is estimated that as many as one in 10,000 may be at risk for disease.

"Thanks to the technological capabilities at SSRL, we were able to rapidly screen hundreds of crystallized samples of this receptor protein to find ones with the best quality, giving the best structure. This study is a good first step toward designing new molecules that could be used as a drug,” Van Petegem said. "These mutations could be a very promising therapeutic target for treating heart disease.”

Future studies at SSRL and other synchrotron facilities will map out other receptor hotspots where these disease mutations cluster and use the detailed information to better understand the complex functions of the protein.

"It is very exciting to see the significant impact of our advanced structural biology technologies in helping users address difficult projects,” said SSRL staff scientist Michael Soltis.

This research was supported by the Canadian Institutes of Health Research. The Stanford Synchrotron Radiation Lightsource is supported by the U. S. Department of Energy Office of Science. SLAC National Accelerator Laboratory is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science.

The Canadian Light Source is Canada's national center for synchrotron research. Located at the University of Saskatchewan in Saskatoon, the CLS is a powerful tool for academic and industrial research in a wide variety of areas including environmental science, natural resources and energy, health and life sciences, and information and communications technology. CLS operations are funded by the Government of Canada, Natural Science and Engineering Research Council, National Research Council of Canada, Canadian Institutes of Health Research, the Government of Saskatchewan and the University of Saskatchewan.

Melinda Lee | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>