Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU researcher documents links between nutrients, genes and cancer spread

28.08.2012
More than 40 compounds turn on genes slowing metastasis
More than 40 plant-based compounds can turn on genes that slow the spread of cancer, according to a first-of-its-kind study by a Washington State University researcher.

Gary Meadows, WSU professor and associate dean for graduate education and scholarship in the College of Pharmacy, says he is encouraged by his findings because the spread of cancer is most often what makes the disease fatal. Moreover, says Meadows, diet, nutrients and plant-based chemicals appear to be opening many avenues of attack.

"We're always looking for a magic bullet," he says. "Well, there are lots of magic bullets out there in what we eat and associated with our lifestyle. We just need to take advantage of those. And they can work together."

Meadows started the study, recently published online in the journal Cancer and Metastasis Reviews, with some simple logic: Most research focuses on the prevention of cancer or the treatment of the original cancer tumor, but it's usually the cancer's spread to nearby organs that kills you. So rather than attack the tumor, said Meadows, let's control its spread, or metastasis.

He focused in particular on genes that suppress metastasis. As search engine terms go, it took him down many a wormhole in the PubMed research database, as the concept of nutrients and metastasis suppressor genes is rarely identified by journals. It's even an afterthought of some of the researchers who find the genes.

"People for the most part did not set out in their research goals to study metastasis suppressor genes," says Meadows. "It was just a gene that was among many other genes that they had looked at in their study."

But Meadows took the studies and looked to see when metastasis suppressor genes were on or off, even if original authors didn't make the connection. In the end, he documented dozens of substances affecting the metastasis suppressor genes of numerous cancers.

He saw substances like amino acids, vitamin D, ethanol, ginseng extract, the tomato carotenoid lycopene, the turmeric component curcumin, pomegranate juice, fish oil and others affecting gene expression in breast, colorectal, prostate, skin, lung and other cancers.

Typically, the substances acted epigenetically, which is to say they turned metastasis suppressor genes on or off.

"So these epigenetic mechanisms are influenced by what you eat," he says. "That may also be related to how the metastasis suppressor genes are being regulated. That's a very new area of research that has largely not been very well explored in terms of diet and nutrition." Meadows says his study reinforces two concepts.

For one, he has a greater appreciation of the role of natural compounds in helping our bodies slow or stop the spread of cancer. The number of studies connecting nutrients and metastasis suppressor genes by accident suggests a need for more deliberate research into the genes.
"And many of these effects have not been followed up on," he says. "There's likely to be more compounds out there, more constituents, that people haven't even evaluated yet."

Meadows also sees these studies playing an important role in the shift from preventing cancer to living with it and keeping it from spreading.

"We've kind of focused on the cancer for a long time," he says. "More recently we've started to focus on the cancer in its environment. And the environment, your whole body as an environment, is really important in whether or not that cancer will spread."

Gary Meadows | EurekAlert!
Further information:
http://www.wsu.edu

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>