Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU flu outbreak provides rare study material

26.08.2014

Nasty epidemic, neat science

Five years ago this month, one of the first U.S. outbreaks of the H1N1 virus swept through the Washington State University campus, striking some 2,000 people. A university math and biology professor has used a trove of data gathered at the time to gain insight into how only a few infected people could launch the virus's rapid spread across the university community.

The fall 2009 semester hadn't even started when the first cases came in to the university's Health and Wellness Services clinic—11 one day, and just two days later, 47. Not two weeks later, doctors and nurses in the clinic saw 164 H1N1 patients, attending to a total of nearly 1,000 sick people, plus hundreds more by phone. They ran out of Tamiflu, an antiviral medication.

The flu wasn't as intense as feared. People felt awful for three or four days and were close to normal within a week. No one died.

Still, WSU took on the national distinction of having one of the first and largest H1N1 outbreaks at an American college. The epidemic also gave Elissa Schwartz, an assistant professor of both math and biological sciences, an ideal phenomenon for scientific study.

At the time, Schwartz was teaching students about the behavior of epidemics in a closed population. She had her students search the scientific literature looking for studies that tracked actual epidemics in closed populations, which have no movement in our out. They found very few.

But they had a fairly closed population in Pullman, more specifically College Hill, where many students live, often in shared housing. When they do leave the house, they're on campus, in close proximity to more people. With the exception of semester breaks and the occasional road trip, they rarely leave.

"We thought, 'Oh, if we can get data on this, then that will be real live data, not simulated data, on the actual number of infections in this community,'" Schwartz recently told Washington State Magazine. "And it turned out that the Health and Wellness Services was tracking it, which was great."

To analyze the numbers, Schwartz used a computer model called FluTE, which can simulate the transmission of an influenza virus across a population and tease out things like how many became infected, how many carriers first had it and what strategies would make the biggest difference in containing its spread.

Transmissibility is measured by the R0, or R naught, a term made somewhat popular in the movie "Contagion." It's the average number of people infected by one person in a fully susceptible population.

Schwartz pegged the R naught for the Pullman outbreak at 2.2, meaning one infected person ended up passing his or her infection on to roughly two others. That's close to the rate attributed to the massive 1918 flu pandemic, which killed more people than the bubonic plague.

Schwartz's analysis also suggests the outbreak was started by as few as 20 people initially infected by the virus. It's a remarkably low number of people given the number of people who ultimately got sick.

"But given that it was spreading as fast as it was," Schwartz said, "and people were living in close proximity as they were, which means the contact rate is really high, then perhaps the number of carriers wasn't low."

Finally, Schwartz wondered what strategy might have worked best to contain the outbreak, from vaccinations to isolation to quarantines, or all of the above. Sick people were asked to isolate themselves from others, but that is difficult, Schwartz said. A sick person can still share a bathroom with others.

A quarantine would contain potentially exposed people, she said. But it would be difficult to carry out because it's unclear how to define a sick person's 'nearest neighbors' when many live in large shared houses such as fraternities, sororities or dormitories.

"Our analysis does show, though it may sound obvious, that vaccination would be the best way to control these types of infections," said Schwartz. Her study was published last year in the Journal of Biological Systems and she presented her findings in July at the Society for Mathematical Biology Annual Meeting in Osaka, Japan.

Elissa Schwartz | Eurek Alert!
Further information:
http://www.wsu.edu

Further reports about: H1N1 Health Society WSU Wellness epidemic epidemics flu infected infections outbreak

More articles from Health and Medicine:

nachricht Using DNA origami to build nanodevices of the future
31.08.2015 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht An ounce of prevention: Research advances on 'scourge' of transplant wards
28.08.2015 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>