Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU flu outbreak provides rare study material

26.08.2014

Nasty epidemic, neat science

Five years ago this month, one of the first U.S. outbreaks of the H1N1 virus swept through the Washington State University campus, striking some 2,000 people. A university math and biology professor has used a trove of data gathered at the time to gain insight into how only a few infected people could launch the virus's rapid spread across the university community.

The fall 2009 semester hadn't even started when the first cases came in to the university's Health and Wellness Services clinic—11 one day, and just two days later, 47. Not two weeks later, doctors and nurses in the clinic saw 164 H1N1 patients, attending to a total of nearly 1,000 sick people, plus hundreds more by phone. They ran out of Tamiflu, an antiviral medication.

The flu wasn't as intense as feared. People felt awful for three or four days and were close to normal within a week. No one died.

Still, WSU took on the national distinction of having one of the first and largest H1N1 outbreaks at an American college. The epidemic also gave Elissa Schwartz, an assistant professor of both math and biological sciences, an ideal phenomenon for scientific study.

At the time, Schwartz was teaching students about the behavior of epidemics in a closed population. She had her students search the scientific literature looking for studies that tracked actual epidemics in closed populations, which have no movement in our out. They found very few.

But they had a fairly closed population in Pullman, more specifically College Hill, where many students live, often in shared housing. When they do leave the house, they're on campus, in close proximity to more people. With the exception of semester breaks and the occasional road trip, they rarely leave.

"We thought, 'Oh, if we can get data on this, then that will be real live data, not simulated data, on the actual number of infections in this community,'" Schwartz recently told Washington State Magazine. "And it turned out that the Health and Wellness Services was tracking it, which was great."

To analyze the numbers, Schwartz used a computer model called FluTE, which can simulate the transmission of an influenza virus across a population and tease out things like how many became infected, how many carriers first had it and what strategies would make the biggest difference in containing its spread.

Transmissibility is measured by the R0, or R naught, a term made somewhat popular in the movie "Contagion." It's the average number of people infected by one person in a fully susceptible population.

Schwartz pegged the R naught for the Pullman outbreak at 2.2, meaning one infected person ended up passing his or her infection on to roughly two others. That's close to the rate attributed to the massive 1918 flu pandemic, which killed more people than the bubonic plague.

Schwartz's analysis also suggests the outbreak was started by as few as 20 people initially infected by the virus. It's a remarkably low number of people given the number of people who ultimately got sick.

"But given that it was spreading as fast as it was," Schwartz said, "and people were living in close proximity as they were, which means the contact rate is really high, then perhaps the number of carriers wasn't low."

Finally, Schwartz wondered what strategy might have worked best to contain the outbreak, from vaccinations to isolation to quarantines, or all of the above. Sick people were asked to isolate themselves from others, but that is difficult, Schwartz said. A sick person can still share a bathroom with others.

A quarantine would contain potentially exposed people, she said. But it would be difficult to carry out because it's unclear how to define a sick person's 'nearest neighbors' when many live in large shared houses such as fraternities, sororities or dormitories.

"Our analysis does show, though it may sound obvious, that vaccination would be the best way to control these types of infections," said Schwartz. Her study was published last year in the Journal of Biological Systems and she presented her findings in July at the Society for Mathematical Biology Annual Meeting in Osaka, Japan.

Elissa Schwartz | Eurek Alert!
Further information:
http://www.wsu.edu

Further reports about: H1N1 Health Society WSU Wellness epidemic epidemics flu infected infections outbreak

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>