Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU flu outbreak provides rare study material

26.08.2014

Nasty epidemic, neat science

Five years ago this month, one of the first U.S. outbreaks of the H1N1 virus swept through the Washington State University campus, striking some 2,000 people. A university math and biology professor has used a trove of data gathered at the time to gain insight into how only a few infected people could launch the virus's rapid spread across the university community.

The fall 2009 semester hadn't even started when the first cases came in to the university's Health and Wellness Services clinic—11 one day, and just two days later, 47. Not two weeks later, doctors and nurses in the clinic saw 164 H1N1 patients, attending to a total of nearly 1,000 sick people, plus hundreds more by phone. They ran out of Tamiflu, an antiviral medication.

The flu wasn't as intense as feared. People felt awful for three or four days and were close to normal within a week. No one died.

Still, WSU took on the national distinction of having one of the first and largest H1N1 outbreaks at an American college. The epidemic also gave Elissa Schwartz, an assistant professor of both math and biological sciences, an ideal phenomenon for scientific study.

At the time, Schwartz was teaching students about the behavior of epidemics in a closed population. She had her students search the scientific literature looking for studies that tracked actual epidemics in closed populations, which have no movement in our out. They found very few.

But they had a fairly closed population in Pullman, more specifically College Hill, where many students live, often in shared housing. When they do leave the house, they're on campus, in close proximity to more people. With the exception of semester breaks and the occasional road trip, they rarely leave.

"We thought, 'Oh, if we can get data on this, then that will be real live data, not simulated data, on the actual number of infections in this community,'" Schwartz recently told Washington State Magazine. "And it turned out that the Health and Wellness Services was tracking it, which was great."

To analyze the numbers, Schwartz used a computer model called FluTE, which can simulate the transmission of an influenza virus across a population and tease out things like how many became infected, how many carriers first had it and what strategies would make the biggest difference in containing its spread.

Transmissibility is measured by the R0, or R naught, a term made somewhat popular in the movie "Contagion." It's the average number of people infected by one person in a fully susceptible population.

Schwartz pegged the R naught for the Pullman outbreak at 2.2, meaning one infected person ended up passing his or her infection on to roughly two others. That's close to the rate attributed to the massive 1918 flu pandemic, which killed more people than the bubonic plague.

Schwartz's analysis also suggests the outbreak was started by as few as 20 people initially infected by the virus. It's a remarkably low number of people given the number of people who ultimately got sick.

"But given that it was spreading as fast as it was," Schwartz said, "and people were living in close proximity as they were, which means the contact rate is really high, then perhaps the number of carriers wasn't low."

Finally, Schwartz wondered what strategy might have worked best to contain the outbreak, from vaccinations to isolation to quarantines, or all of the above. Sick people were asked to isolate themselves from others, but that is difficult, Schwartz said. A sick person can still share a bathroom with others.

A quarantine would contain potentially exposed people, she said. But it would be difficult to carry out because it's unclear how to define a sick person's 'nearest neighbors' when many live in large shared houses such as fraternities, sororities or dormitories.

"Our analysis does show, though it may sound obvious, that vaccination would be the best way to control these types of infections," said Schwartz. Her study was published last year in the Journal of Biological Systems and she presented her findings in July at the Society for Mathematical Biology Annual Meeting in Osaka, Japan.

Elissa Schwartz | Eurek Alert!
Further information:
http://www.wsu.edu

Further reports about: H1N1 Health Society WSU Wellness epidemic epidemics flu infected infections outbreak

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>