Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World´s first child born after uterus transplantation

07.10.2014

In a ground-breaking research project at the University of Gothenburg, seven Swedish women have had embryos reintroduced after receiving wombs from living donors. Now the first transplanted woman has delivered a baby – a healthy and normally developed boy. The world-unique birth was acknowledged in The Lancet on 5 October.

The uterus transplantation research project at the University of Gothenburg started in 1999 and has been evaluated in over 40 scientific articles. The goal of the Gothenburg project is to enable women who were born without a womb or who have lost their wombs in cancer surgery to give birth to their own children.


Mats Brännström, Professor of Obstetrics and Gynaecology at the University of Gothenburg

University of Gothenburg

Live donors
Nine women in the project have received a womb from live donors – in most cases the recipient’s mother but also other family members and close friends. The transplanted uterus was removed in two cases, in one case due to a serious infection and in the other due to blood clots in the transplanted blood vessels.

The seven remaining women have in 2014 tried to become pregnant through a process where their own embryos, produced through IVF, are reintroduced to the transplanted uterus.

First child from a transplanted uterus
The first early pregnancy was confirmed in the spring after a successful first pregnancy attempt ina woman in her mid-30s, a little over a year after her transplantation.

In early September, the woman successfully delivered a baby by caesarean section, making her the first woman in the world to deliver a child from a transplanted uterus. Her uterus was donated by a 61-year-old unrelated woman.

The caesarean section had to be performed earlier than planned: the woman developed preeclampsia in week 32 of her pregnancy the CTG indicated that the baby was under stress. A caesarean section was performed in accordance with normal clinical routines so as not to risk the health of the mother and child.

Developing normally
According to Professor Mats Brännström, who performed the caesarean section, the perfectly healthy newborn boy is developing normally. The baby weighed 1,775 grams (3 lbs 14.6 oz) at birth, which is normal size considering the gestational age at delivery.

‘The baby screamed right away and has not required any other care than normal clinical observation at the neonatal unit. The mother and child are both doing well and have returned home. The new parents are of course very happy and thankful,’ says Professor Mats Brännström, who is leading the research project.

‘The reason for the woman’s preeclampsia is unknown, but it may be due to her immunosuppressive treatment combined with the fact that she is missing one kidney. The age of the donated womb may also be a factor. Also, preeclampsia is generally more common among women who have become pregnant through IVF treatment.’

Mild rejection episodes
The woman has had three mild rejection episodes since the transplant, one of which occurred during the pregnancy. The rejection episodes, which are often seen also in other types of transplants, could be stopped with immunosuppressive treatment.
Followed closely

The research team followed the pregnancy closely, carefully monitoring the growth and development of the foetus with a special focus on the blood supply to the uterus and umbilical cord.

‘There were concerns that the blood supply may be compromised since we had reattached the blood vessels to the womb. But we did not notice anything unusual concerning the function of the uterus and the foetus, and the pregnancy followed all normal curves,’ says Brännström.

Major step
The successful delivery is considered a major step forward.

‘It gives us scientific evidence that the concept of uterus transplantation can be used to treat uterine factor infertility, which up to now has remained the last untreatable form of female infertility. It also shows that transplants with a live donor are possible, including if the donor is past menopause,’ says Brännström.

Several research teams around the world have been awaiting the results of the Gothenburg study in order to launch similar observational studies. The pregnancy attempts are ongoing with the other six women in the project.

Watch the research team talk about the succesful birth: https://www.youtube.com/watch?v=kujArjUSt5A&list=PLF9EB8295A10334D9

Link to journal: http://www.thelancet.com/

Contact:
Mats Brännström, Professor of Obstetrics and Gynaecology at the University of Gothenburg and Chief Physician at the Sahlgrenska University Hospital
mats.brannstrom@obgyn.gu.se

ABOUT THE UTERUS TRANSPLANTATION RESEARCH PROJECT
The uterus transplantation research project at the University of Gothenburg is the world’s first systematic and scientifically based study aimed to find a treatment for women suffering from uterine factor infertility.

The researchers in the project are carefully monitoring several medical, psychological and quality of life-related parameters.

Uterine infertility, which affects over 200,000 European women, is the only form of female infertility that until now has lacked effective treatment.

Two previous experiments with uterine transplants have been performed, in Saudi Arabia in 2000 and in Turkey in 2011. In the first case, the womb from a living donor, had to be removed shortly after the transplant. In the second case, the donor was a brain-dead heart beating young woman. In 2013, the research team in Turkey reported several attempts to reintroduce embryos and two very early pregnancies that ended in miscarriage.

The research project in Gothenburg is funded by grants from a private research foundation, the Jane and Dan Olsson Foundation.

Weitere Informationen:

http://www.sahlgrenska.gu.se/english/news_and_events/news/News_Detail//world-s-f...

Krister Svahn | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>