Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-first high blood pressure treatment trialled in Melbourne

06.04.2009
A world-first breakthrough to treat high blood pressure has been successfully trialled in Melbourne.

The clinical trial showed significant improvement in blood pressure of participants who were given a new catheter-based treatment where blood pressure lowering medication had failed.

Director of Monash University's Centre of Cardiovascular Research and Education in Therapeutics, Professor Henry Krum led the research collaboration between Monash, the Baker Heart and Diabetes Institute, and St Vincent's Hospital to develop the new surgical technique that disrupts nerves around the kidneys to dramatically reduce high blood pressure.

The technique could benefit those at high risk of heart attack or stroke from high blood pressure that resists conventional drug treatments.

Professor Krum presented these data in a late breaking clinical trial session at The American College of Cardiology's 58th Annual Scientific Session earlier this week and was lead author on a simultaneous publication in The Lancet.

The results are set to revolutionise high blood pressure treatment in patients around the world.

Professor Henry Krum said the treatment would benefit those five to twenty per cent of patients with high blood pressure who do not respond to medication.

"Patients who underwent the procedure had a significant reduction in their blood pressure levels and we were able therefore to reduce their risk of severe stroke or heart attack," Professor Krum said.

A total of 50 patients were recruited from Australia and overseas for the trial conducted by a team of researchers, which included Professor Henry Krum, from Monash University, Professor Markus Schlaich and Professor Murray Esler from Baker IDI and Professor Rob Whitbourn from St Vincent's Hospital, Melbourne.

Professor Krum said the trial results were the most significant in the treatment of high blood pressure since the introduction of the drugs that are in use today.

"We showed an excellent safety profile of this brief, catheter-based therapy. No long-term adverse events resulted from the procedure. Therapeutic renal denervation led to a large and persistant decrease in blood pressure, which was achieved in patients resistant to multiple existing hypertensive drug types. Moreover, reduction of blood pressure was evident as early as 1 month, was further reduced at 3 months, and persisted through subsequent assessments," Professor Krum said.

The procedure is carried out under local anaesthetic and uses radio energy frequency, delivered to the targeted nerve area via catheter. As a result the nerves are silenced in the renal artery, which supplies blood to the kidneys.

Researchers had long-believed that this region was a key regulator of blood pressure, but until these trial results the theory had not been successfully trialled.

"The catheter allowed us to target a very specific area to deliver the right amount of frequency to the nerves without damaging the surrounding areas," Professor Krum said.

Samantha Blair | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>