Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's first delivery of intra-arterial Avastin directly into brain tumor

19.11.2009
NewYork-Presbyterian/Weill Cornell study opens blood-brain barrier to deliver high-dose chemotherapy to malignant brain tumors; may avoid common side effects of systemic chemotherapy

Neurosurgeons from NewYork-Presbyterian Hospital/Weill Cornell Medical Center performed the world's first intra-arterial cerebral infusion of Avastin (bevacizumab) directly into a patient's malignant brain tumor.

This novel intra-arterial (IA) technique may expose the cancer to higher doses of the drug therapy, while possibly sparing the patient common side effects of receiving the drug intravenously (IV) or throughout their body.

The investigative procedure -- called super selective intra-arterial cerebral infusion of Avastin -- has been successfully performed on five patients with promising results. Details of the first case are scheduled for publication in the next issue of Journal of Experimental Therapeutics and Oncology.

The researchers are currently enrolling patients for the Phase I study, which will test the safety and tolerability of this new method of drug delivery. If proven successful, NewYork-Presbyterian/Weill Cornell physician-scientists believe that this promising method may one day offer patients a new and better therapy for glioblastoma multiforme (GBM), a common type of brain cancer that has not responded well to currently available therapies. In addition, the authors believe that this technique may herald the birth of a new field of "interventional neuro-oncology."

"We believe that infusing Avastin directly via the cerebral arteries deep into the site of the brain tumor may help to kill off the cancer cells hiding within the tumor and adjacent brain tissue," explains co-author and study co-principal investigator (PI) Dr. John A. Boockvar, associate professor of neurological surgery at Weill Cornell Medical College and director of the brain tumor research laboratory at NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

"We are combining the latest in drug treatment with a revolutionary delivery technique, which could potentially be more effective than currently available treatments," says co-author and co-PI, Dr. Howard Riina, co-director of interventional neuroradiology at NewYork-Presbyterian Hospital/Weill Cornell Medical Center and associate professor of neurological surgery, neurology and radiology at Weill Cornell Medical College.

Because of the blood-brain barrier (BBB), which prevents many IV-administered drugs from penetrating the blood vessel walls sufficiently in order to get into the brain, no one knows for sure if current drugs actually get into the brain after IV infusion.

"This new technique may be a way to get through that barrier and deliver higher doses of drug to the tumor with less toxicity to the patient," says Dr. Boockvar.

To deliver the drug, neurosurgeons direct a hair-thin microcatheter through blood vessels in the body, via the carotid artery running up the neck, and then into the smaller arteries deep in the brain. Upon arriving at the tumor site, a drug to open the blood-brain barrier is injected. After the BBB is temporarily opened -- a window of time lasting approximately five minutes -- the chemotherapeutic agent Avastin is injected directly into the malignant tumor.

Participants in the trial will be given varying doses of the drug in order to test which dose is best tolerated. Following this Phase I trial, the researchers plan to immediately begin a Phase II trial to test the technique's efficacy.

"This potential new drug delivery system demonstrates translational research from the Brain and Spine Center of NewYork-Presbyterian Hospital/Weill Cornell Medical Center at its best," says Dr. Philip E. Stieg, chairman of neurological surgery at Weill Cornell Medical College and neurosurgeon-in-chief at NewYork-Presbyterian/Weill Cornell. "If proven successful, it is a promising move forward for patients dealing with resistant brain tumors."

The current standard of care is to give patients with GBM the drug bevacizumab (Avastin) intravenously (IV) -- delivering the drug directly into a vein. The drug works by slowing the growth of new blood vessels within tumors, cutting off the life-giving blood and then causing the cancer cells to die. In May 2009, the FDA approved Avastin for the treatment of GBM.

Study researchers are currently recruiting males or females, 18 years of age or older, with documented diagnosis of relapsed GBM, anaplastic astrocytoma (AA) or anaplastic mixed oligoastrocytoma (AOA) -- two other types of brain tumors. The authors have no financial disclosures related to the study.

Study co-authors include Drs. Justin Fraser and Jared Knopman of Weill Cornell Medical College, and Dr. Ronald Scheff and Sherese Fralin, R.N., of NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

For more information, patients may call (866) NYP-NEWS.

NewYork-Presbyterian Hospital/Weill Cornell Medical Center

NewYork-Presbyterian Hospital/Weill Cornell Medical Center, located in New York City, is one of the leading academic medical centers in the world, comprising the teaching hospital NewYork-Presbyterian and Weill Cornell Medical College, the medical school of Cornell University. NewYork-Presbyterian/Weill Cornell provides state-of-the-art inpatient, ambulatory and preventive care in all areas of medicine, and is committed to excellence in patient care, education, research and community service. Weill Cornell physician-scientists have been responsible for many medical advances -- including the development of the Pap test for cervical cancer; the synthesis of penicillin; the first successful embryo-biopsy pregnancy and birth in the U.S.; the first clinical trial for gene therapy for Parkinson's disease; the first indication of bone marrow's critical role in tumor growth; and, most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. NewYork-Presbyterian Hospital also comprises NewYork-Presbyterian Hospital/Columbia University Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, NewYork-Presbyterian Hospital/Westchester Division and NewYork-Presbyterian Hospital/The Allen Hospital. NewYork-Presbyterian is the #1 hospital in the New York metropolitan area and is consistently ranked among the best academic medical institutions in the nation, according to U.S.News & World Report. Weill Cornell Medical College is the first U.S. medical college to offer a medical degree overseas and maintains a strong global presence in Austria, Brazil, Haiti, Tanzania, Turkey and Qatar.

John Rodgers | EurekAlert!
Further information:
http://www.cornell.edu
http://www.nyp.org
http://www.med.cornell.edu

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>