Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Women more affected than men by air pollution when running marathons

03.03.2010
Poor air quality apparently affects the running times of women in marathons, according to a study by Virginia Tech civil and environmental engineer Linsey Marr.

Marr's findings come from a comprehensive study that evaluated marathon race results, weather data, and air pollutant concentrations in seven marathons over a period of eight to 28 years. The top three male and female finishing times were compared with the course record and contrasted with air pollutant levels, taking high temperatures that were detrimental to performance into consideration.

Higher levels of particles in the air were associated with slower running times for women, while men were not significantly affected, Marr said. The difference may be due to the smaller size of women's tracheas, which makes it easier for certain particles to deposit there and possibly to cause irritation. http://www.cee.vt.edu/index.php?do=view&content=0&apps=2&level

=2&id=17&pid=374d8f8453664a9500d01a9d54441988

"Although pollution levels in these marathons rarely exceeded national standards for air quality, performance was still affected," Marr said.

Her work, done in collaboration with Matthew Ely, an exercise physiologist at the U.S. Army Research Institute of Environmental Medicine, appears in the official journal of the American College of Sports Medicine, Medicine and Science in Sports & Exercise. http://www.acsm.org/

Her studies were conducted where major U.S. marathons are located, such as New York, Boston, and Los Angeles, where pollution tends to be highest. Although the person might not be significantly impacted by low-yet-still-acceptable air quality, marathoners are atypical because of their breathing patterns, she said.

"Previous research has shown that during a race, marathon runners inhale and exhale about the same volume of air as a sedentary person would over the course of two full days," Marr said. "Therefore, runners are exposed to much greater amounts of pollutants than under typical breathing conditions."

Particulate matter appeared to be the only performance-altering factor in air quality, with carbon monoxide, ozone, nitrogen dioxide and sulfur dioxide levels not impacting race times.

Marr is a member of the national Center for Environmental Implications of NanoTechnology, funded by the National Science Foundation. This center is dedicated to determining the relationship between a vast array of nanomaterials and their potential consequences for the environment.

She is also a past recipient of the National Science Foundation (NSF) Faculty Early Career Development Program Award, supporting her work with air pollution, particularly how to measure air pollutant emissions.

Marr came to Virginia Tech in 2003 after a year of post-doctoral studies at the Massachusetts Institute of Technology. She completed her Ph.D. in environmental engineering at UC-Berkeley, where she was a NSF Graduate Research Fellow and a U.S. Environmental Protection Agency STAR Graduate Research Fellow. She earned her bachelor's degree in engineering science at Harvard University in 1996.

Virginia Tech's College of Engineering is internationally recognized for its excellence in 14 engineering disciplines and computer science. As the nation's third largest producer of engineers with baccalaureate degrees, undergraduates benefit from an innovative curriculum that provides a hands-on, minds-on approach to engineering education. It complements classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study, including biomedical engineering, state-of-the-art microelectronics, and nanotechnology. http://www.eng.vt.edu/main/index.php

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>