Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin research team reveals novel way to treat drug-resistant brain tumor cells

04.06.2012
New research from the University of Wisconsin-Madison explains why the incurable brain cancer, glioblastoma multiforme (GBM), is highly resistant to current chemotherapies.

The study, from the brain-tumor research lab of Dr. John Kuo, assistant professor of neurological surgery and human oncology at UW School of Medicine and Public Health, also reports success for a combination therapy that knocks out signaling of multiple members of the epidermal growth factor receptor (EGFR) family in brain-cancer cells.

The late U.S. Sen. Edward M. Kennedy died of GBM in 2009. People diagnosed with GBM live on average for only 15 months after diagnosis, even after undergoing aggressive surgery, radiation and chemotherapy. Earlier research from Dr. Kuo and other scientists showed that GBM cancer stem cells escape current treatments and proliferate rapidly to cause tumor recurrence.

Several years ago, research suggested that a drug engineered to target EGFR signaling might work against GBM because many brain cancers carried EGFR mutations. Excessive and abnormal EGFR signaling spurs the growth of cancer cells. Although cetuximab, a monoclonal-antibody drug, was successful in clinical trials for patients with lung, colorectal, and head and neck cancers, it failed against GBM.

Research by Dr. Paul Clark, a scientist in Kuo's lab and the study's lead author, shows why. When cetuximab treatment switches off EGFR activity and should inhibit cancer-cell growth, cancer stem cells compensate by turning on two other EGFR family receptors (ERBB2 and ERBB3) and continue to grow. One of these receptors, ERBB2, is implicated in certain types of chemotherapy-resistant breast cancer. Fortunately, another novel drug already approved by the FDA, lapatinib, inhibits ERBB2 activity and signaling by multiple EGFR members.

This study shows that cancer stem-cell growth was markedly inhibited by lapatinib treatment, which results in combined knockout of multiple EGFR family members.

"This is good news, because these drugs target an important mechanism for the (GBM) cancer cells to grow so quickly and evade current therapies, and these molecularly targeted drugs are also well-tolerated by patients and have minimal side effects," Dr. Clark said.

Kuo, director of the Comprehensive Brain Tumor Program at UW Health and chair of the Carbone Cancer Center brain tumor group, said that results of several brain cancer clinical trials with these novel drugs and other new strategies are pending or underway.

Susan Lampert Smith | EurekAlert!
Further information:
http://www.uwhealth.org

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>