Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wii key to helping kids balance

Rice University students develop diagnostic game to aid Shriners patients

By cleverly linking five Wii Balance Boards, a team of Rice University undergraduates has combined the appeal of a video game with the utility of a computerized motion-tracking system that can enhance the progress of patients at Shriners Hospital for Children-Houston.

The Rice engineering students created the new device using components of the popular Nintendo game system to create a balance training system.

What the kids may see as a fun video game is really a sophisticated way to help them advance their skills. The Wii Balance Boards lined up between handrails will encourage patients age 6 to 18 to practice their balance skills in an electronic gaming environment. The active handrails, which provide feedback on how heavily patients depend on their arms, are a unique feature.

Many of the children targeted for this project have cerebral palsy, spina bifida or amputations. Using the relatively inexpensive game console components improves the potential of this system to become a cost-effective addition to physical therapy departments in the future.

Steven Irby, an engineer at Shriners' Motion Analysis Laboratory, pitched the idea to Rice's engineering mentors after the success of last year's Trek Tracker project, a computer-controlled camera system for gait analysis that was developed by engineering students at Rice's Oshman Engineering Design Kitchen (OEDK).

The engineering seniors who chose to tackle this year's new project -- Michelle Pyle, Drew Berger and Matt Jones, aka Team Equiliberators -- hope to have the system up and running at Shriners Hospital before they graduate next month.

"He (Irby) wants to get kids to practice certain tasks in their games, such as standing still, then taking a couple of steps and being able to balance, which is pretty difficult for some of them," Pyle said. "The last task is being able to take a couple of steps and then turn around."

"This isn't a measurement device as much as it is a game," Irby said. "But putting the two systems together is what makes it unique. The Wii system is not well suited to kids with significant balance problems; they can't play it. So we're making something that is more adaptable to them."

The game requires patients to shoot approaching monsters by hitting particular spots with their feet as they step along the Wii array, computer science student Jesus Cortez, one of the game's creators, explained. The game gets harder as the patients improve, he said, and the chance to rack up points gives them an incentive.

A further step, not yet implemented, would be to program feedback from the handrails into the game. Leaning on the rails would subtract points from the users' scores, encouraging them to improve their postures. The game would also present challenges specific to younger and older children to keep them engaged.

The programming team also includes undergraduate Irina Patrikeeva and graduate student Nick Zhu. Studio arts undergraduate Jennifer Humphreys created the artwork.

The system's components include a PC, the Wii boards (aligned in a frame) and two balance beam-like handrails that read how much force patients are putting on their hands. Communications to the PC are handled via the Wii's native Bluetooth protocol.

The students said their prototype cost far less than the $2,000 they'd budgeted. Rice supplied the computer equipment and LabVIEW software they needed to create the diagnostic software that interfaces with Shriners' existing systems, and they purchased the Wii Balance Boards on eBay.

"Small force plates that people commonly use for such measurements cost at least a couple of grand, but Wii boards -- and people have done research on this -- give you a pretty good readout of your center of balance for what they cost," Pyle said.

Jones, who is building the final unit for delivery to Shriners, said he wants patients to see the Wii boards. "We're putting clear acrylic over the boards so there aren't any gaps that could trip up the younger ones," he said. "We wanted to use a device that's familiar to them, but they might not be convinced it's a Wii board unless they can see it."

A video of the team and their device is available at

David Ruth | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>