Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute Scientists Create Working Artificial Nerve Networks

28.01.2009
Weizmann Institute scientists are learning how to grow nerve networks that perform as logic circuits.

Scientists have already hooked brains directly to computers by means of metal electrodes, in the hope of both measuring what goes on inside the brain and eventually healing conditions such as blindness or epilepsy. In the future, the interface between brain and artificial system might be based on nerve cells grown for that purpose.

In research that was recently featured on the cover of Nature Physics, Prof. Elisha Moses of the Physics of Complex Systems Department and his former research students Drs. Ofer Feinerman and Assaf Rotem have taken the first step in this direction by creating circuits and logic gates made of live nerves grown in the lab.

When neurons - brain nerve cells - are grown in culture, they don't form complex 'thinking' networks. Moses, Feinerman and Rotem wondered whether the physical structure of the nerve network could be designed to be more brain-like. To simplify things, they grew a model nerve network in one dimension only - by getting the neurons to grow along a groove etched in a glass plate. The scientists found they could stimulate these nerve cells using a magnetic field (as opposed to other systems of lab-grown neurons that only react to electricity).

Experimenting further with the linear set-up, the group found that varying the width of the neuron stripe affected how well it would send signals. Nerve cells in the brain are connected to great numbers of other cells through their axons (long, thin extensions), and they must receive a minimum number of incoming signals before they fire one off in response. The researchers identified a threshold thickness, one that allowed the development of around 100 axons. Below this number, the chance of a response was iffy, while just a few over this number greatly raised the chance a signal would be passed on.

The scientists then took two thin stripes of around 100 axons each and created a logic gate similar to one in an electronic computer. Both of these 'wires' were connected to a small number of nerve cells. When the cells received a signal along just one of the 'wires,' the outcome was uncertain; but a signal sent along both 'wires' simultaneously was assured of a response. This type of structure is known as an AND gate. The next structure the team created was slightly more complex: Triangles fashioned from the neuron stripes were lined up in a row, point to rib, in a way that forced the axons to develop and send signals in one direction only. Several of these segmented shapes were then attached together in a loop to create a closed circuit. The regular relay of nerve signals around the circuit turned it into a sort of biological clock or pacemaker.

Moses: 'We have been able to enforce simplicity on an inherently complicated system. Now we can ask, 'What do nerve cells grown in culture require in order to be able to carry out complex calculations?' As we find answers, we get closer to understanding the conditions needed for creating a synthetic, many-neuron 'thinking' apparatus.'

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il
http://www.nature.com/nphys/journal/v4/n12/pdf/nphys1099.pdf

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>