Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute Scientists Create Working Artificial Nerve Networks

28.01.2009
Weizmann Institute scientists are learning how to grow nerve networks that perform as logic circuits.

Scientists have already hooked brains directly to computers by means of metal electrodes, in the hope of both measuring what goes on inside the brain and eventually healing conditions such as blindness or epilepsy. In the future, the interface between brain and artificial system might be based on nerve cells grown for that purpose.

In research that was recently featured on the cover of Nature Physics, Prof. Elisha Moses of the Physics of Complex Systems Department and his former research students Drs. Ofer Feinerman and Assaf Rotem have taken the first step in this direction by creating circuits and logic gates made of live nerves grown in the lab.

When neurons - brain nerve cells - are grown in culture, they don't form complex 'thinking' networks. Moses, Feinerman and Rotem wondered whether the physical structure of the nerve network could be designed to be more brain-like. To simplify things, they grew a model nerve network in one dimension only - by getting the neurons to grow along a groove etched in a glass plate. The scientists found they could stimulate these nerve cells using a magnetic field (as opposed to other systems of lab-grown neurons that only react to electricity).

Experimenting further with the linear set-up, the group found that varying the width of the neuron stripe affected how well it would send signals. Nerve cells in the brain are connected to great numbers of other cells through their axons (long, thin extensions), and they must receive a minimum number of incoming signals before they fire one off in response. The researchers identified a threshold thickness, one that allowed the development of around 100 axons. Below this number, the chance of a response was iffy, while just a few over this number greatly raised the chance a signal would be passed on.

The scientists then took two thin stripes of around 100 axons each and created a logic gate similar to one in an electronic computer. Both of these 'wires' were connected to a small number of nerve cells. When the cells received a signal along just one of the 'wires,' the outcome was uncertain; but a signal sent along both 'wires' simultaneously was assured of a response. This type of structure is known as an AND gate. The next structure the team created was slightly more complex: Triangles fashioned from the neuron stripes were lined up in a row, point to rib, in a way that forced the axons to develop and send signals in one direction only. Several of these segmented shapes were then attached together in a loop to create a closed circuit. The regular relay of nerve signals around the circuit turned it into a sort of biological clock or pacemaker.

Moses: 'We have been able to enforce simplicity on an inherently complicated system. Now we can ask, 'What do nerve cells grown in culture require in order to be able to carry out complex calculations?' As we find answers, we get closer to understanding the conditions needed for creating a synthetic, many-neuron 'thinking' apparatus.'

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il
http://www.nature.com/nphys/journal/v4/n12/pdf/nphys1099.pdf

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>