Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways of treating Alzheimer’s

01.11.2011
Several potential drugs for the treatment of Alzheimer’s have worked well on mice – but none of them on humans. A leading researcher from the Sahlgrenska Academy at the University of Gothenburg, Sweden, is now launching brand new methods for diagnosing Alzheimer’s and monitoring treatment.
Research advances in recent years have given us a detailed knowledge of the molecular mechanisms behind Alzheimer’s disease. The spotlight has fallen on beta amyloid, a peptide formed from a special protein in the brain. The prevailing hypothesis is that the protein clumps together into plaques, which damage the brain’s nerve cells and causes the characteristic symptoms of Alzheimer’s.

The amyloid theory has spawned a large number of potential drugs which attempt to delay the development of the disease by slowing down the formation of, or even clearing, plaques. However, several major clinical trials have shown that this type of medication is not at all effective.

Kaj Blennow, a professor at the University of Gothenburg’s Sahlgrenska Academy and one of the world’s leading dementia researchers, is now taking research into new Alzheimer’s medication in a brand new direction.
“It’s important that we constantly question research results, including in Alzheimer’s research,” says Blennow. “And to do this we have to come up with new analytical methods.”

Blennow and his research colleagues believe that the solution lies in being able to test different drugs directly on living patients instead of on mice as has been the case to date.
“The mouse models currently being used have a very tenuous link to the most common form of Alzheimer’s,” says Blennow. “This is particularly obvious when new drug candidates are tested on real people – we have now identified over 100 molecules that reduce the formation of plaques in mice with Alzheimer’s, but unfortunately none have led to a single drug that slows down the illness in humans.”

Blennow and his research colleagues at the Clinical Neurochemistry Laboratory are trying instead to come up with new analytical methods that use biomarkers to monitor biochemical changes in patients with Alzheimer’s. It is hoped that the biomarkers can be used both to make an accurate and early diagnosis and to establish and monitor the effects of new drugs.

“Our studies on patients with Alzheimer’s and other age-related disorders would suggest that beta-amyloid is perhaps not the direct cause of the illness, but instead the brain’s response to different types of stress,” says Blennow. “This could completely change the way we view the illness and could play a crucial role in future treatments.”

ALZHEIMER’S DISEASE
With more than 100,000 people affected in Sweden, Alzheimer’s is one of our most common diseases. Caused by changes in the brain’s nerve cells, the disease predominantly affects the memory and often leads to an early death. Alzheimer’s results in not only considerable suffering for patients and their families, but also enormous costs to society.
For more information, please contact: Kaj Blennow
Tel: +46 (0)31 343 1791, mobile: +46 (0)761 073 835
E-mail: kaj.blennow@neuro.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>