Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wayne State discovers potential treatment for skin and corneal wound healing in diabetics

13.12.2013
Diabetes Mellitus (DM), a metabolic disorder that affects nearly 170 million people worldwide, is characterized by chronic hyperglycemia that disrupts carbohydrate fat and protein metabolism resulting from defects in insulin secretion, insulin action or both. DM can cause long-term damage, dysfunction and even failure of various organs.

Patients with DM may develop corneal complications and delayed wound healing. This slow wound healing contributes to increased infections and the formation of bed sores and ulcers. Corneal complications include diabetic neuropathies and ocular complications that often lead to reduced vision or blindness.

A team of Wayne State University researchers recently developed several diabetic models to study impaired wound healing in diabetic corneas. Using a genome-wide cDNA array analysis, the group identified genes, their associated pathways and the networks affected by DM in corneal epithelial cells and their roles in wound closure. Their findings may bring scientists one step closer to developing new treatments that may slow down or thwart the impact on vision.

The team, led by Fu-Shin Yu, Ph.D., professor of ophthalmology and director of research at the Kresge Eye Institute, has discovered transforming growth factor â (TGFâ) signaling as a major pathway affected by hyperglycemia in DM corneal epithelial cells. In addition, Yu and his team identified for the first time that wound-induced upregulation of TGFâ3 is dampened by hyperglycemia and that by adding TGFâ3 to the wound, epithelial wound closure was accelerated.

This discovery, published online in the prestigious scientific journal, Diabetes, may provide new treatment options for diabetic wound healing in tissues such as the cornea and skin.

"Delayed wound healing are major complications of diabetes, often leading to severe end results such as diabetic ulcers, losing a limb or going blind," said Joan Dunbar, Ph.D., associate vice president for technology commercialization at Wayne State University. "Dr. Yu's discovery of the genome-wide transcriptional analysis has allowed the development of composition and methods to treat negative effects of diabetes, which may ultimately promote healing of wounds, reduce the negative effects of diabetic neuropathies, and promote the health of the eye and maintenance of eye sight in diabetics. The findings in the cornea have a strong implication in the skin as they both have neuropathy and delayed wound healing."

Wayne State University has filed a U.S. Provisional Patent application on Yu's technology discovery.

Yu's research was funded by a grant from the National Eye Institute of the National Institutes of Health, award number EY01869.

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world.

Julie O'Connor | EurekAlert!
Further information:
http://www.research.wayne.edu

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>