Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What can the water monster teach us about tissue regeneration in humans?

26.09.2012
Understanding how salamanders grow new limbs provides insights into the potential of human regenerative medicine

Based on two new studies by researchers at the Salk Institute for Biological Studies, regeneration of a new limb or organ in a human will be much more difficult than the mad scientist and supervillain, Dr. Curt Connors, made it seem in the Amazing Spider-man comics and films.


Salk research shows that in the axolotl, a Mexican salamander, jumping genes have to be shackled or they might move around in the genomes of cells in the tissue destined to become a new limb, and disrupt the process of regeneration.

Image: Courtesy of the Salk Institute for Biological Studies

As those who saw the recent "The Amazing Spiderman" movie will know, Dr. Connors injected himself with a serum made from lizard DNA to successfully regrow his missing lower right arm - that is, before the formula transformed him into a reptilian humanoid.

But by studying a real lizard-like amphibian, which can regenerate missing limbs, the Salk researchers discovered that it isn't enough to activate genes that kick start the regenerative process. In fact, one of the first steps is to halt the activity of so-called jumping genes.

In research published August 23 in Development, Growth & Differentiation, and July 27 in Developmental Biology, the researchers show that in the Mexican axolotl, jumping genes have to be shackled or they might move around in the genomes of cells in the tissue destined to become a new limb, and disrupt the process of regeneration.

They found that two proteins, piwi-like 1 (PL1) and piwi-like 2 (PL2), perform the job of quieting down jumping genes in this immature tadpole-like form of a salamander, known as an axolotl - a creature whose name means water monster and who can regenerate everything from parts of its brain to eyes, spinal cord, and tail.

"What our work suggests is that jumping genes would be an issue in any situation where you wanted to turn on regeneration," says the studies' senior author, Tony Hunter, a professor in the Molecular and Cell Biology Laboratory and director of the Salk Institute Cancer Center.

"As complex as it already seems, it might seem a hopeless task to try to regenerate a limb or body part in humans, especially since we don't know if humans even have all the genes necessary for regeneration," says Hunter. "For this reason, it is important to understand how regeneration works at a molecular level in a vertebrate that can regenerate as a first step. What we learn may eventually lead to new methods for treating human conditions, such as wound healing and regeneration of simple tissues."

The research team, which included investigators from other universities around the country, sought to characterize the transcriptional fingerprint emerging from the early phase of axolotl regeneration. They specifically looked at the blastema, a structure that forms at a limb's stump.

There the scientists found transcriptional activation of some genes, usually found only in germlime cells, which indicated cellular reprogramming of differentiated cells into a germline state.

In the Development, Growth & Differentiation study, the research team, led by Wei Zhu, then a postdoctoral researcher in Hunter's laboratory, focused on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon.

LINE-1 elements are jumping genes that arose early in vertebrate evolution. They are pieces of DNA that copy themselves in two stages - first from DNA to RNA by transcription, and then from RNA to DNA by reverse transcription. These DNA copies can then insert themselves into the cell's genome at new positions.

A few years ago, Fred Gage, professor in the Laboratory of Genetics at the Salk Institute, discovered that LINE-1 elements move around during neuronal development, and may program the identities of individual neurons.

"Most of these copies appear to be 'junk' DNA, because they are defective and can never jump again," says Hunter. But all mammals, including humans, still have active LINE-1 genes, and the salamander, whose genome is 10 times larger than a human's, contains many more.

Active LINE-1 retrotransposons can keep jumping, and that was true in the developing blastema where LINE-1 jumping was dramatically switched on. But in the researchers' companion study, in Developmental Biology, they found that PL1 and PL2 switch off transcription of repeat elements, such as LINE-1. "The idea is that in the development of germ cells, you definitely don't want these things hopping around," says Hunter. "The mobilization of these jumping genes can introduce harmful genomic rearrangements or even abort the regeneration process."

In fact, when the researchers inhibited PL1 and PL2 activity in the axoloti limb blastema, regeneration was significantly slowed down.

"The need to switch on one set of genes to stop other genes from jumping just illustrates how amazingly difficult it would be to regenerate something as complex as a limb in humans," Hunter says. "But that doesn't mean we won't learn valuable lessons about how to treat degenerative diseases."

The work was supported by grants from the National Cancer Institute, the U.S. Public Health Service, and an Innovation Grant from the Salk Institute.

About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>