Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walking to the Beat Could Help Patients with Parkinson’s Disease

21.09.2012
Pitt study examines effects of visual, auditory, and tactile cues on human gait
Walking to a beat could be useful for patients needing rehabilitation, according to a University of Pittsburgh study. The findings, highlighted in the August issue of PLOS One, demonstrate that researchers should further investigate the potential of auditory, visual, and tactile cues in the rehabilitation of patients suffering from illnesses like Parkinson’s Disease—a brain disorder leading to shaking (tremors) and difficulty walking.Ervin Sejdic, an assistant professor of engineering in Pitt’s Swanson School of Engineering

Together with a team of collaborators from abroad, Ervin Sejdic, an assistant professor of engineering in Pitt’s Swanson School of Engineering, studied the effects of various metronomic stimuli (a mechanically produced beat) on fifteen healthy adults, ages 18 to 30. Walkers participated in two sessions consisting of five 15-minute trials in which the participants walked with different cues.

In the first, participants walked at their preferred walking speed. Then, in subsequent trials, participants were asked to walk to a metronomic beat, produced by way of visuals, sound, or touch. Finally, participants were asked to walk with all three cues simultaneously, the pace of which was set to that of the first trial.

“We found that the auditory cue had the greatest influence on human gait, while the visual cues had no significant effect whatsoever,” said Sejdic. “This finding could be particularly helpful for patients with Parkinson’s Disease, for example, as auditory cues work very well in their rehabilitation.”

Sejdic said that with illnesses like Parkinson’s Disease, a big question is whether researchers can better understand the changes that come with this deterioration. Through their study, the Pitt team feels that visual cues could be considered as an alternative modality in rehabilitation and should be further explored in the laboratory.

“Oftentimes, a patient with Parkinson’s Disease comes in for an exam, completes a gait assessment in the laboratory, and everything is great,” said Sejdic. “But then, the person leaves and falls down. Why? Because a laboratory is a strictly controlled environment. It’s flat, has few obstacles, and there aren’t any cues (like sound) around us. When we’re walking around our neighborhoods, however, there are sidewalks, as well as streetlights and people honking car horns: you have to process all of this information together. We are trying to create that real-life space in the laboratory.”

In the future, Sejdic and his team would like to conduct similar walking trials with patients with Parkinson’s Disease, to observe whether their gait is more or less stable.

“Can we see the same trends that we observed in healthy people?” he said. “And, if we observe the same trends, then that would have direct connotations to rehabilitation processes.”

Additionally, his team plans to explore the impact of music on runners and walkers.

Funding for this project was provided, in part, by the University of Pittsburgh, the University of Toronto, and Holland Bloorview Kids Rehabilitation Hospital.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

Further reports about: BEAT Disease Parkinson Pitt vaccine Swanson various metronomic stimuli visual cues

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>