Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wake Forest Baptist researchers study alcohol addiction using optogenetics

16.12.2013
Wake Forest Baptist Medical Center researchers are gaining a better understanding of the neurochemical basis of addiction with a new technology called optogenetics.

In neuroscience research, optogenetics is a newly developed technology that allows researchers to control the activity of specific populations of brain cells, or neurons, using light. And it's all thanks to understanding how tiny green algae, that give pond scum its distinctive color, detect and use light to grow.

The technology enables researchers like Evgeny A. Budygin, Ph.D., assistant professor of neurobiology and anatomy at Wake Forest Baptist, to address critical questions regarding the role of dopamine in alcohol drinking-related behaviors, using a rodent model.

"With this technique, we've basically taken control of specific populations of dopamine cells, using light to make them respond – almost like flipping a light switch," said Budygin. "These data provide us with concrete direction about what kind of patterns of dopamine cell activation might be most effective to target alcohol drinking."

The latest study from Budygin and his team published online in last month's journal Frontiers in Behavioral Neuroscience. Co-author Jeffrey L. Weiner, Ph.D., professor of physiology and pharmacology at Wake Forest Baptist, said one of the biggest challenges in neuroscience has been to control the activity of brain cells in the same way that the brain actually controls them. With optogenetics, neuroscientists can turn specific neurons on or off at will, proving that those neurons actually govern specific behaviors.

"We have known for many years what areas of the brain are involved in the development of addiction and which neurotransmitters are essential for this process," Weiner said. "We need to know the causal relationship between neurochemical changes in the brain and addictive behaviors, and optogenetics is making that possible now."

The researchers used cutting-edge molecular techniques to express the light-responsive channelrhodopsin protein in a specific population of dopamine cells in the brain-reward system of rodents. They then implanted tiny optical fibers into this brain region and were able to control the activity of these dopamine cells by flashing a blue laser on them.

"You can place an electrode in the brain and apply an electrical current to mimic the way brain cells get excited, but when you do that you're activating all the cells in that area," Weiner said. "With optogenetics, we were able to selectively control a specific population of dopamine cells in a part of the brain-reward system. Using this technique, we discovered distinct patterns of dopamine cell activation that seemed to be able to disrupt the alcohol-drinking behavior of the rats."

Weiner said there is translational value from the study because "it gives us better insight into how we might want to use something like deep-brain stimulation to treat alcoholism. Doctors are starting to use deep-brain stimulation to treat everything from anxiety to depression, and while it works, there is little scientific understanding behind it, he said.

Budygin agreed. "Now we are taking the first steps in this direction," he said. "It was impossible before the optogenetic era."

The study was supported by the National Institutes of Health T32 AA007565, AA020564, AA021099, AA017531, AA010422, and DA024763.

Bonnie Davis | EurekAlert!
Further information:
http://www.wakehealth.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>