Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wake Forest Baptist researchers study alcohol addiction using optogenetics

16.12.2013
Wake Forest Baptist Medical Center researchers are gaining a better understanding of the neurochemical basis of addiction with a new technology called optogenetics.

In neuroscience research, optogenetics is a newly developed technology that allows researchers to control the activity of specific populations of brain cells, or neurons, using light. And it's all thanks to understanding how tiny green algae, that give pond scum its distinctive color, detect and use light to grow.

The technology enables researchers like Evgeny A. Budygin, Ph.D., assistant professor of neurobiology and anatomy at Wake Forest Baptist, to address critical questions regarding the role of dopamine in alcohol drinking-related behaviors, using a rodent model.

"With this technique, we've basically taken control of specific populations of dopamine cells, using light to make them respond – almost like flipping a light switch," said Budygin. "These data provide us with concrete direction about what kind of patterns of dopamine cell activation might be most effective to target alcohol drinking."

The latest study from Budygin and his team published online in last month's journal Frontiers in Behavioral Neuroscience. Co-author Jeffrey L. Weiner, Ph.D., professor of physiology and pharmacology at Wake Forest Baptist, said one of the biggest challenges in neuroscience has been to control the activity of brain cells in the same way that the brain actually controls them. With optogenetics, neuroscientists can turn specific neurons on or off at will, proving that those neurons actually govern specific behaviors.

"We have known for many years what areas of the brain are involved in the development of addiction and which neurotransmitters are essential for this process," Weiner said. "We need to know the causal relationship between neurochemical changes in the brain and addictive behaviors, and optogenetics is making that possible now."

The researchers used cutting-edge molecular techniques to express the light-responsive channelrhodopsin protein in a specific population of dopamine cells in the brain-reward system of rodents. They then implanted tiny optical fibers into this brain region and were able to control the activity of these dopamine cells by flashing a blue laser on them.

"You can place an electrode in the brain and apply an electrical current to mimic the way brain cells get excited, but when you do that you're activating all the cells in that area," Weiner said. "With optogenetics, we were able to selectively control a specific population of dopamine cells in a part of the brain-reward system. Using this technique, we discovered distinct patterns of dopamine cell activation that seemed to be able to disrupt the alcohol-drinking behavior of the rats."

Weiner said there is translational value from the study because "it gives us better insight into how we might want to use something like deep-brain stimulation to treat alcoholism. Doctors are starting to use deep-brain stimulation to treat everything from anxiety to depression, and while it works, there is little scientific understanding behind it, he said.

Budygin agreed. "Now we are taking the first steps in this direction," he said. "It was impossible before the optogenetic era."

The study was supported by the National Institutes of Health T32 AA007565, AA020564, AA021099, AA017531, AA010422, and DA024763.

Bonnie Davis | EurekAlert!
Further information:
http://www.wakehealth.edu

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>