Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Vitamin B3 as a novel approach to treat fungal infections

University of Montreal scientists demonstrate antifungal properties of vitamin B3

A team of scientists from the Institute for Research in Immunology and Cancer (IRIC) of the University of Montreal have identified vitamin B3 as a potential antifungal treatment. Led by IRIC Principal Investigators Martine Raymond, Alain Verreault and Pierre Thibault, in collaboration with Alaka Mullick, from the Biotechnology Research Institute of the National Research Council Canada, the study is the subject of a recent article in Nature Medicine.

Infections by the yeast Candida albicans represent a significant public health problem and a common complication in immunodeficient individuals such as AIDS patients, cancer patients undergoing chemotherapy and recipients of organ transplants. While some treatments are available, their efficacy can be compromised by the emergence of drug-resistant strains.

The current study shows that a C. albicans enzyme, known as Hst3, is essential to the growth and survival of the yeast. Researchers found that genetic or pharmacological inhibition of Hst3 with nicotinamide, a form of vitamin B3, strongly reduced C. albicans virulence in a mouse model. Both normal and drug-resistant strains of C. albicans were susceptible to nicotinamide. In addition, nicotinamide prevented the growth of other pathogenic Candida species and Aspergillus fumigatus (another human pathogen), thus demonstrating the broad antifungal properties of nicotinamide.

"There is an urgent need to develop new therapies to kill C. albicans because it is one of the leading causes of hospital-acquired infections and is associated with high mortality rates," explains Martine Raymond, who is also a professor at the University of Montreal Department of Biochemistry. "Although many issues remain to be investigated, the results of our study are very exciting and they constitute an important first step in the development of new therapeutic agents to treat fungal infections without major side effects for patients."

Partners in research:

Martine Raymond is Principal Investigator in the Yeast Molecular Biology Laboratory. Alain Verreault is Principal Investigator in the Chromosome Biogenesis Laboratory. Pierre Thibault is Principal Investigator in the Proteomics and Bioanalytical Mass Spectrometry Laboratory. The research received funding from the Canadian Institutes for Health Research and the National Science and Engineering Research Council of Canada.

About the study:

The article, "Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy," published in Nature Medicine, was authored by Hugo Wurtele, Sarah Tsao, Guylaine Lépine, Alaka Mullick, Jessy Tremblay, Paul Drogaris, Eun-Hye Lee, Pierre Thibault, Alain Verreault and Martine Raymond.

On the Web:

Article from Nature Medicine:
Institute for Research in Immunology and Cancer:
University of Montreal Department of Biochemistry:

Carolyne Lord | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>