Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visual system can retain considerable plasticity after extended blindness

28.01.2014
Findings described in the PNAS Early Edition

Deprivation of vision during critical periods of childhood development has long been thought to result in irreversible vision loss. Now, researchers from the Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School (HMS) and Massachusetts Institute of Technology (MIT) have challenged that theory by studying a unique population of pediatric patients who were blind during these critical periods before removal of bilateral cataracts.


Pictured are simulated views of an abstract painting to depict the development of pattern vision following early and extended blindness. Working with children who gained sight after several years of early onset blindness, Kalia et al., found that they had poor spatial resolution and impoverished contrast perception immediately after cataract surgery. This is simulated in the left panel. Follow-up assessments six months later revealed surprising enhancement of contrast sensitivity. The middle panel depicts the substantial improvements in perceptual quality this corresponds to. The right panel shows the original painting. These findings suggest that the visual system retains considerable plasticity beyond the early years believed to be critical for normal development. The painting (acrylics on canvas) was created by a child who gained sight after extended blindness.

Credit: Image courtesy of Luis Lesmes, Michael Dorr, Peter Bex, Amy Kalia and Pawan Sinha

The researchers found improvement after sight onset in contrast sensitivity tests, which measure basic visual function and have well-understood neural underpinnings. Their results show that the human visual system can retain plasticity beyond critical periods, even after early and extended blindness. Their findings were recently published in the Proceedings of the National Advancement of Science (PNAS) Early Edition.

"Our research group has been studying the development of vision in children who were blind from birth because of congenital cataracts. We have been measuring if and how their vision develops after surgery in late childhood and adolescence to remove cataracts, which enables sight for the first time. Our results show remarkable plasticity and vision continues to improve in many children long after the surgery," said Senior Author Peter J. Bex, Ph.D., Senior Scientist, Schepens Eye Research Institute/Mass. Eye and Ear and Associate Professor, HMS Department of Ophthalmology.

The authors explain the research: Project Prakash is a joint scientific and humanitarian effort led by Pawan Sinha, Ph.D., full professor at MIT. The humanitarian part aims to address problems of treatable blindness in India by providing surgeries free of cost to children with cataracts. In the Western world, children born with cataracts typically are treated in the first year of life, but children with this condition in rural India often go untreated because their families lack the necessary financial resources. The project also aims to answer the questions: can children who suffer from extended congenital blindness develop vision after cataract surgery and if so, how does this process happen?

The "critical period" or the "critical window" is a traditional concept in the field of neuroscience that suggest that there is "plasticity," or potential for development, early in life. But as we grow older ¯ and in the case of vision, pass the age of 7 or 8 ¯ there is less and less plasticity in the visual system.

The concept of the critical period intersects with clinical care in the practice patterns for children with amblyopia: it was once thought that if you didn't treat amblyopia before age 8, then the window of opportunity for saving sight was lost. For these patients, one potential justification for not removing them during their adolescence was that "they'll just be blind anyway." However, this once accepted mantra has started to change in the last 10 years with new insights into plasticity and the potential impact of brain or sensory training following surgery.

The Schepens/Mass. Eye and Ear contribution to Project Prakash was an iPad-based assessment of the contrast sensitivity function developed in the Bex Laboratory. It is more precise and easier to apply than previous contrast sensitivity assessments.

"Given this background and past research, the most conservative hypothesis for our study would have been that children between 8 and 18 would show no changes in low-level vision, and no changes in their contrast sensitivity functions , when they were tested after their cataract surgery," said Dr. Bex. "With our test (which usually requires specialized laboratory equipment) and some analytics we developed, we showed that some patients developed substantial vision after 15 years of blindness. This visual change could not be accounted for by simple optical factors, either."

This research has important implications for potential treatments of congenital cataracts, in addition to the fundamental questions of development and plasticity in neuroscience, the researchers conclude.

This work was supported by National Institutes of Health Grants R01EY019281 and RO1EY20517.

A full list of authors and acknowledgments is available in the paper.

About Massachusetts Eye and Ear

Mass. Eye and Ear clinicians and scientists are driven by a mission to find cures for blindness, deafness and diseases of the head and neck. After uniting with Schepens Eye Research Institute Mass. Eye and Ear in Boston became the world's largest vision and hearing research center, offering hope and healing to patients everywhere through discovery and innovation. Mass. Eye and Ear is a Harvard Medical School teaching hospital and trains future medical leaders in ophthalmology and otolaryngology, through residency as well as clinical and research fellowships. Internationally acclaimed since its founding in 1824, Mass. Eye and Ear employs full-time, board-certified physicians who offer high-quality and affordable specialty care that ranges from the routine to the very complex. U.S. News & World Report's "Best Hospitals Survey" has consistently ranked the Mass. Eye and Ear Departments of Otolaryngology and Ophthalmology one of the top hospitals in the nation.

Mary Leach | EurekAlert!
Further information:
http://www.meei.harvard.edu

More articles from Health and Medicine:

nachricht Understanding the Body’s Response to Worms and Allergies
24.04.2015 | University of Manchester

nachricht Caring for blindness: A new protein in sight?
22.04.2015 | NSERM (Institut national de la santé et de la recherche médicale)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Strong Evidence – New Insight in Muscle Function

27.04.2015 | Life Sciences

The Future of Oil and Gas: Last of Her Kind

27.04.2015 | Power and Electrical Engineering

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>