Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus shows promise as prostate cancer treatment

26.02.2013
A recombinant Newcastle disease virus kills all kinds of prostate cancer cells, including hormone resistant cells, but leaves normal cells unscathed, according to a paper published online ahead of print in the Journal of Virology.

A treatment for prostate cancer based on this virus would avoid the adverse side effects typically associated with hormonal treatment for prostate cancer, as well as those associated with cancer chemotherapies generally, says corresponding author Subbiah Elankumaran of Virginia Polytechnic Institute, Blacksburg. The modified virus is now ready to be tested in preclinical animal models, and possibly in phase I human clinical trials.

Newcastle disease virus kills chickens, but does not harm humans. It is an oncolytic virus that hones in on tumors, and has shown promising results in a number of human clinical trials for various forms of cancer. However, successful treatments have required multiple injections of large quantities of virus, because in such trials the virus probably failed to reach solid tumors in sufficient quantities, and spread poorly within the tumors.

The researchers addressed this problem by modifying the virus's fusion protein. Fusion protein fuses the virus envelope to the cell membrane, enabling the virus to enter the host cell. These proteins are activated by being cleaved by any of a number of different cellular proteases. They modified the fusion protein in their construct such that it can be cleaved only by prostate specific antigen (which is a protease). That minimizes off-target losses, because these "retargeted" viruses interact only with prostate cancer cells, thus reducing the amount of virus needed for treatment.

Retargeted Newcastle disease virus has major potential advantages over other cancer therapies, says Elankumaran. First, its specificity for prostate cancer cells means it would not attack normal cells, thereby avoiding the various unpleasant side effects of conventional chemotherapies. In previous clinical trials, even with extremely large doses of naturally occurring strains, "only mild flu-like symptoms were seen in cancer patients," says Elankumaran. Second, it would provide a new treatment for hormone-refractory patients, without the side effects of testosterone suppression that result from hormonal treatments.

About one man in six will be diagnosed with prostate cancer, and one in 36 will die of this disease. Men whose prostate cancer becomes refractory to hormone treatment have a median survival of about 40 months if they have bone metastases, and 68 months if they do not have bone metastases.

A copy of the manuscript can be found online at http://bit.ly/asmtip0213b. Formal publication of the article is scheduled for the first April 2013 issue of Journal of Virology.

(R. Shobana, S.K. Samal, and S. Elankumaran, 2013. Prostate-specific antigen-retargeted recombinant Newcastle disease virus for prostate cancer virotherapy. J. Virol. online ahead of print, 23 January 2013, doi:10.1128/JVI.02394-12)

Journal of Virology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>