Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus shows promise as prostate cancer treatment

26.02.2013
A recombinant Newcastle disease virus kills all kinds of prostate cancer cells, including hormone resistant cells, but leaves normal cells unscathed, according to a paper published online ahead of print in the Journal of Virology.

A treatment for prostate cancer based on this virus would avoid the adverse side effects typically associated with hormonal treatment for prostate cancer, as well as those associated with cancer chemotherapies generally, says corresponding author Subbiah Elankumaran of Virginia Polytechnic Institute, Blacksburg. The modified virus is now ready to be tested in preclinical animal models, and possibly in phase I human clinical trials.

Newcastle disease virus kills chickens, but does not harm humans. It is an oncolytic virus that hones in on tumors, and has shown promising results in a number of human clinical trials for various forms of cancer. However, successful treatments have required multiple injections of large quantities of virus, because in such trials the virus probably failed to reach solid tumors in sufficient quantities, and spread poorly within the tumors.

The researchers addressed this problem by modifying the virus's fusion protein. Fusion protein fuses the virus envelope to the cell membrane, enabling the virus to enter the host cell. These proteins are activated by being cleaved by any of a number of different cellular proteases. They modified the fusion protein in their construct such that it can be cleaved only by prostate specific antigen (which is a protease). That minimizes off-target losses, because these "retargeted" viruses interact only with prostate cancer cells, thus reducing the amount of virus needed for treatment.

Retargeted Newcastle disease virus has major potential advantages over other cancer therapies, says Elankumaran. First, its specificity for prostate cancer cells means it would not attack normal cells, thereby avoiding the various unpleasant side effects of conventional chemotherapies. In previous clinical trials, even with extremely large doses of naturally occurring strains, "only mild flu-like symptoms were seen in cancer patients," says Elankumaran. Second, it would provide a new treatment for hormone-refractory patients, without the side effects of testosterone suppression that result from hormonal treatments.

About one man in six will be diagnosed with prostate cancer, and one in 36 will die of this disease. Men whose prostate cancer becomes refractory to hormone treatment have a median survival of about 40 months if they have bone metastases, and 68 months if they do not have bone metastases.

A copy of the manuscript can be found online at http://bit.ly/asmtip0213b. Formal publication of the article is scheduled for the first April 2013 issue of Journal of Virology.

(R. Shobana, S.K. Samal, and S. Elankumaran, 2013. Prostate-specific antigen-retargeted recombinant Newcastle disease virus for prostate cancer virotherapy. J. Virol. online ahead of print, 23 January 2013, doi:10.1128/JVI.02394-12)

Journal of Virology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>