Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Virus-like particles provide vital clues about brain tumours

Exosomes are small, virus-like particles that can transport genetic material and signal substances between cells. Researchers at Lund University, Sweden, have made new findings about exosomes released from aggressive brain tumours, gliomas. These exosomes are shown to have an important function in brain tumour development, and could be utilised as biomarkers to assess tumour aggressiveness through a blood test.

“Current wisdom says that cells are closed entities that communicate through the secretion of soluble signalling molecules. Recent findings indicate that cells can exchange more complex information – whole packages of genetic material and signalling proteins. This is an entirely new conception of how cells communicate”, says Dr Mattias Belting, Professor of Oncology at Lund University and senior consultant in oncology at Skåne University Hospital, Lund, Sweden.

Exosomes are small vesicles of only 30–90 nm. They are produced inside cells and act as “transport vehicles” of genetic material that can be transferred to surrounding cells. Since their first discovery, exosomes have been found in blood, saliva, urine, breast milk and other body fluids.

Mattias Belting’s research group has investigated exosomes released from tumour cells of patients with gliomas. The tiny exosome particles are delivered from the tumour to healthy cells of the brain and may prime normal tissue for efficient spreading of the tumour. The researchers in Lund have now shown that the aggressiveness of the tumour is reflected in the exosome molecular profile.

“We have succeeded in developing a method for the isolation of exosomes from brain tumour patients through a relatively simple blood test. Our analyses indicate that the content of exosomes mirrors the aggressiveness of the tumour in a unique manner”, says postdoctoral researcher Paulina Kucharzewska.

Exosomes could thus be utilised as biomarkers, i.e. to provide guidance on how the patient should be treated and to monitor treatment response. This possibility is particularly attractive with brain tumours that are not readily accessible for tissue biopsy. However, analysis of exosomes from the blood may also prove important with other tumour types. The value of conventional tumour biopsies is limited by the heterogeneity of tumour tissue, i.e. the tissue specimen may not be fully representative of the biological characteristics of a particular tumour. Exosomes, however, may offer more comprehensive information, according to the researchers.

The second international meeting on exosomes has just opened in Boston, and Mattias Belting and members of his team are there.

“It is very exciting to be part of the emergence of a novel research field. It can be anticipated that the most influential researchers in this area may one day be awarded the Nobel Prize”, says Dr Belting.

The results are published in Proceedings of the National Academy of Sciences (PNAS).

Professor Mattias Belting:
Mobile: 0046 46 733 507473

Lotte Billing | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Taming chaos: Calculating probability in complex systems

21.03.2018 | Physics and Astronomy

Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

21.03.2018 | Physics and Astronomy

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>