Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual biopsy may allow earlier diagnosis of brain disorder in athletes

01.12.2010
In a study of ex-pro athletes, researchers found that a specialized imaging technique called magnetic resonance spectroscopy (MRS) may help diagnose chronic traumatic encephalopathy (CTE), a disorder caused by repetitive head trauma that currently can only be definitively diagnosed at autopsy. Results of the study were presented today at the annual meeting of the Radiological Society of North America (RSNA).

"The devastating effects of brain injuries suffered by pro football players who repeatedly suffered concussions and subconcussive brain trauma during their careers have put the spotlight on CTE," said Alexander P. Lin, Ph.D., a principal investigator at the Center for Clinical Spectroscopy at Brigham and Women's Hospital in Boston. "However, blows to the head suffered by all athletes involved in contact sports are of increasing concern."

According to the Centers for Disease Control and Prevention, an estimated 3.8 million sports- and recreation-related concussions occur in the U.S. each year. In addition, subclinical concussions—injuries that cannot be diagnosed as concussions but have similar effects—are often unrecognized.

Studies have shown that individuals who suffer repetitive brain trauma are more likely to experience ongoing problems, from permanent brain damage to long-term disability.

CTE is a degenerative brain disease caused by repeated brain trauma and marked by a buildup of abnormal proteins in the brain. CTE has been associated with memory difficulty, impulsive and erratic behavior, depression and eventually, dementia.

"Cumulative head trauma invokes changes in the brain, which over time can result in a progressive decline in memory and executive functioning in some individuals," Dr. Lin said. "MRS may provide us with noninvasive, early detection of CTE before further damage occurs, thus allowing for early intervention."

In Dr. Lin's study, conducted in collaboration with the Boston University Center for the Study of Traumatic Encephalopathy (CSTE), five retired professional male athletes from football, wrestling and boxing with suspected CTE and five age- and size-matched controls between the ages of 32 and 55 were examined with MRS. In MRS, sometimes referred to as "virtual biopsy," a powerful magnetic field and radio waves are used to extract information about chemical compounds within the body, using a clinical MR scanner.

The results revealed that compared with the brains of the control patients, the brains of the former athletes with suspected CTE had increased levels of choline, a cell membrane nutrient that signals the presence of damaged tissue, and glutamate/glutamine, or Glx. MRS also revealed altered levels of gamma-aminobutyric acid (GABA), aspartate, and glutamate in the brains of former athletes.

"By helping us identify the neurochemicals that may play a role in CTE, this study has contributed to our understanding of the pathophysiology of the disorder," Dr. Lin said.

For example, the amino acid and neurotransmitter glutamate is involved in most aspects of normal brain function and must be present in the right places and at the right concentration in order for the brain to be healthy — too much or too little can be harmful.

"Being able to diagnose CTE could help athletes of all ages and levels, as well as war veterans who suffer mild brain injuries, many of which go undetected," Dr. Lin said.

Results of CSTE neuropathological studies of retired football players and other athletes have led to significant changes in the NFL, as well as collegiate and youth sports. Recently, the researchers found evidence of CTE in 21-year-old Owen Thomas, the University of Pennsylvania football captain who committed suicide in April 2010.

Coauthors are Saadallah Ramadan, Ph.D., Hayden Box, B.S., Peter Stanwell, Ph.D., and Robert Stern, Ph.D. Dr. Lin's research team is led by Carolyn Mountford, D.Phil. Other collaborators include Ann McKee, M.D., Robert Cantu, M.D., and Christopher Nowinski.

Note: Copies of RSNA 2010 news releases and electronic images will be available online at RSNA.org/press10 beginning Monday, Nov. 29.

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

Editor's note: The data in these releases may differ from those in the published abstract and those actually presented at the meeting, as researchers continue to update their data right up until the meeting. To ensure you are using the most up-to-date information, please call the RSNA Newsroom at 1-312-949-3233.

For patient-friendly information on MRI and MRS, visit RadiologyInfo.org

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>