Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual biopsy may allow earlier diagnosis of brain disorder in athletes

01.12.2010
In a study of ex-pro athletes, researchers found that a specialized imaging technique called magnetic resonance spectroscopy (MRS) may help diagnose chronic traumatic encephalopathy (CTE), a disorder caused by repetitive head trauma that currently can only be definitively diagnosed at autopsy. Results of the study were presented today at the annual meeting of the Radiological Society of North America (RSNA).

"The devastating effects of brain injuries suffered by pro football players who repeatedly suffered concussions and subconcussive brain trauma during their careers have put the spotlight on CTE," said Alexander P. Lin, Ph.D., a principal investigator at the Center for Clinical Spectroscopy at Brigham and Women's Hospital in Boston. "However, blows to the head suffered by all athletes involved in contact sports are of increasing concern."

According to the Centers for Disease Control and Prevention, an estimated 3.8 million sports- and recreation-related concussions occur in the U.S. each year. In addition, subclinical concussions—injuries that cannot be diagnosed as concussions but have similar effects—are often unrecognized.

Studies have shown that individuals who suffer repetitive brain trauma are more likely to experience ongoing problems, from permanent brain damage to long-term disability.

CTE is a degenerative brain disease caused by repeated brain trauma and marked by a buildup of abnormal proteins in the brain. CTE has been associated with memory difficulty, impulsive and erratic behavior, depression and eventually, dementia.

"Cumulative head trauma invokes changes in the brain, which over time can result in a progressive decline in memory and executive functioning in some individuals," Dr. Lin said. "MRS may provide us with noninvasive, early detection of CTE before further damage occurs, thus allowing for early intervention."

In Dr. Lin's study, conducted in collaboration with the Boston University Center for the Study of Traumatic Encephalopathy (CSTE), five retired professional male athletes from football, wrestling and boxing with suspected CTE and five age- and size-matched controls between the ages of 32 and 55 were examined with MRS. In MRS, sometimes referred to as "virtual biopsy," a powerful magnetic field and radio waves are used to extract information about chemical compounds within the body, using a clinical MR scanner.

The results revealed that compared with the brains of the control patients, the brains of the former athletes with suspected CTE had increased levels of choline, a cell membrane nutrient that signals the presence of damaged tissue, and glutamate/glutamine, or Glx. MRS also revealed altered levels of gamma-aminobutyric acid (GABA), aspartate, and glutamate in the brains of former athletes.

"By helping us identify the neurochemicals that may play a role in CTE, this study has contributed to our understanding of the pathophysiology of the disorder," Dr. Lin said.

For example, the amino acid and neurotransmitter glutamate is involved in most aspects of normal brain function and must be present in the right places and at the right concentration in order for the brain to be healthy — too much or too little can be harmful.

"Being able to diagnose CTE could help athletes of all ages and levels, as well as war veterans who suffer mild brain injuries, many of which go undetected," Dr. Lin said.

Results of CSTE neuropathological studies of retired football players and other athletes have led to significant changes in the NFL, as well as collegiate and youth sports. Recently, the researchers found evidence of CTE in 21-year-old Owen Thomas, the University of Pennsylvania football captain who committed suicide in April 2010.

Coauthors are Saadallah Ramadan, Ph.D., Hayden Box, B.S., Peter Stanwell, Ph.D., and Robert Stern, Ph.D. Dr. Lin's research team is led by Carolyn Mountford, D.Phil. Other collaborators include Ann McKee, M.D., Robert Cantu, M.D., and Christopher Nowinski.

Note: Copies of RSNA 2010 news releases and electronic images will be available online at RSNA.org/press10 beginning Monday, Nov. 29.

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

Editor's note: The data in these releases may differ from those in the published abstract and those actually presented at the meeting, as researchers continue to update their data right up until the meeting. To ensure you are using the most up-to-date information, please call the RSNA Newsroom at 1-312-949-3233.

For patient-friendly information on MRI and MRS, visit RadiologyInfo.org

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>