Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral replicase points to potential cancer therapy

28.03.2011
Alpha viruses, such as Sindbis virus, carry their genetic information on a single strand of RNA. On infection they use a protein, replicase, to produce double stranded RNA (dsRNA) which is used as genetic material to make more viruses.

However the body recognizes dsRNA as foreign, and infected cells initiate an immune response. New research published in BioMed Central's open access journal BMC Cancer demonstrates that an artificial plasmid coding for the replicase genes of Sindbis virus causes regression and destruction of lung cancer, or melanoma, cells in mice.

Previous attempts to use synthetic dsRNA to destroy tumor cells have met with problems, including side effects at an effective dose, but there are also concerns about using attenuated viruses, to deliver dsRNA inside cells. Researchers from the University of Texas at Austin have instead used a plasmid containing Sindbis replicase genes (nsp1-4) to force cells to produce dsRNA themselves.

For ten days mice were given daily injections of plasmid into the site of a tumor. After another 15 days most of the tumors had begun to regress, and by day 37 all of the tumors had either regressed or been destroyed. Professor Cui said, "The anti-cancer action of the plasmid seemed to be two-fold. Firstly accumulation of dsRNA resulted in cell death and secondly the presence of dsRNA, and the foreign, unmethylated, plasmid DNA, inside a cell activated both innate and adaptive immune responses."

... more about:
»BMC »BioMed »DNA »RNA »STM »Viral »immune response

Professor Cui continued, "In our study both highly immunogenic and poorly immunogenic tumors were receptive to treatment with an RNA replicase based plasmid. Our results suggested a novel approach to cancer molecular therapy."

Notes to Editors

1. Replicase-based plasmid DNA shows anti-tumor activity
B. Leticia Rodriguez, Zhen Yu, Woon-Gye Chung, Richard Weiss and Zhengrong Cui
BMC Cancer (in press)
Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Cancer is an Open Access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

Further reports about: BMC BioMed DNA RNA STM Viral immune response

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>